
	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

AgensGraph Developer Manual
SKAI	worldwide	Co.,	Ltd.	

		

2018 년	12 월	12 일	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Introduction

AgensGraph Highlights
AgensGraph,	a	database	built	on	a	graph	data	model	that	ensures	ACID	transactions,	was	
implemented	by	utilizing	main	features	of	PostgreSQL,	an	open	source	database.	

Key	features	include:	

• Multi-model	database	
– Supports	Graph,	Relational,	and	Document	models	
– Intuitive	and	flexible	data	modeling	using	Graph	and	JSON	documents	

• High-level	query	features	
– Supports	ANSI	SQL	and	Cypher	query	
– Supports	ACID	transactions	
– Possible	to	create	a	hybrid	query	statement	that	combines	SQL	and	Cypher	

syntax	when	creating	a	query	
– Able	to	create	hierarchical	graph	labels	

• High	performance	query	statement	processing	
– Supports	graph	indexing	for	fast	graph	traversal	
– Possible	to	generate	vertex	and	edge	index	
– Supports	a	full-text	search	for	JSON	document	processing	

• Constraints	
– Supports	Unique,	Mandatory,	Check	constraints	

• High	Availability	
– Possible	active-standby	configuration	

• Visualization	tools	
– Visualizes	the	result	data	of	graph	queries	

• Advanced	security	features	
– Implements	an	authentication	system	using	Kerberos	and	LDAP	
– Encrypts	via	SSL/TLS	protocols	

• Connectivity	
– Provides	JDBC	and	Hadoop	drivers	

Graph Database Concepts
This	section	introduces	the	graph	data	model.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

AgensGraph Database

The	graph	database	stores	and	manages	objects	of	a	real	model	in	graph	form.	
A	relation	(edge)	exists	between	objects	(vertices),	and	a	group	of	similar	vertices	can	be	
expressed	as	a	group	(label).	
As	vertices	and	edges	have	data	(properties),	they	can	be	called	Property	Graph	Models	as	
well.	

Let's	take	a	closer	look	at	the	components	of	this	graph	data	model.	
The	following	example	shows	components	of	a	graph:	

	

Vertices

Vertices	are	the	most	basic	elements	in	the	graph	data	model.	They	represent	entities	in	the	
real	world	and	have	properties.	

A	graph	has	vertices	and	edges	as	the	base	units.	In	AgensGraph,	both	vertices	and	edges	
may	contain	Properties.	While	entities	are	usually	represented	by	vertices,	they	may	be	
indicated	using	edges	in	some	cases.	Unlike	edges	and	properties,	vertices	may	have	zero	
or	multiple	label	values.	

The	simplest	form	of	a	graph	consists	of	a	single	vertex.	A	vertex	can	have	zero	or	more	
properties.	

	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

The	next	step	is	to	construct	a	graph	with	multiple	vertices.	Add	two	or	more	vertices	to	the	
graph	of	the	previous	step	and	add	one	or	more	properties	to	the	existing	vertex.	

	

Edges

Edges	connect	vertices.	When	two	vertices	are	connected	via	en	edge	and	each	vertex	plays	
as	start	vertex	or	end	vertex	depending	on	the	direction	of	the	edge.	Like	vertices,	edges	
have	properties.	
The	edges	between	vertices	play	an	important	role	in	the	graph	database,	especially	when	
you	search	for	linked	data.	
With	edges,	you	may	make	vertices	into	a	variety	of	data	structures,	such	as	lists,	trees,	
maps,	and	composite	entities.	By	adding	edges	to	the	example	we	are	building,	we	can	
represent	more	meaningful	data.	

	

In	the	example,	ACTED_IN	and	DIRECTEDare	used	as	edge	types.	The	ACTED_IN	property,	
Roles,	stores	the	value	of	array	type.	

The	ACTED_IN	edge	has	the	Tom	Hanks	vertex	as	start	vertex	and	the	Forrest	Gump	vertex	
as	end	vertex.	In	other	words,	we	can	say	that	the	Tom	Hanks	vertex	has	an	outgoing	edge	
and	the	Forrest	Gump	vertex	has	an	incoming	edge.	

If there is an edge in a single direction, you do not have to duplicate the edge and add it in the opposite direction;
this is related to the graph traversal or performance.

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Edges	are	always	directional,	but	they	may	ignore	directionality	if	it	is	not	needed	in	your	
application.	The	diagram	below	shows	a	vertex	having	an	edge	pointing	to	itself.	

	All	edges	are	
recommended	to	have	an	edge	type	to	perform	the	graph	traversal	in	a	more	efficient	
manner.	

Properties

Both	vertices	and	edges	may	have	properties.	Properties	are	attribute	values,	and	each	
attribute	name	should	be	defined	only	as	a	string	type.	

The	available	data	types	for	property	values	are:	

• Numeric	type	
	

• String	type	
	

• Boolean	type	
	

• List	type	(a	collection	of	various	data	types)	
NULL values cannot be used as property values. If NULL is entered, the property itself is assumed to be absent.
NULL values, however, can be used in List.

Type	 Description	 Value	range	

boolean	 	 true/false	

byte	 8-bit	integer	 -128	to	127,	inclusive	

short	 16-bit	integer	 -32768	to	32767,	inclusive	

int	 32-bit	integer	 -2147483648	to	2147483647,	inclusive	

long	 64-bit	integer	 -9223372036854775808	to	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

9223372036854775807,	inclusive	

float	 variable-precision,	inexact	 15	decimal	digits	precision	

char	 16-bit	unsigned	integers	
representing	
Unicode	characters	

u0000	to	uffff	(0	to	65535)	

String	 sequence	of	Unicod	
characters	

infinite	

Labels

You	may	define	the	roles	or	types	of	vertices	or	edges	using	labels.	Vertices	or	edges	with	
similar	characteristics	can	be	grouped	and	the	name	of	such	a	group	can	be	defined,	which	
is	called	a	"label."	That	is,	all	vertices	or	edges	with	similar	labels	belong	to	the	same	group.	

Database	query	statements	can	be	performed	only	on	the	group	(not	the	entire	graph)	
using	labels,	which	is	helpful	for	a	more	efficient	querying.	

Using	labels	for	vertices	is	optional,	and	each	vertex	may	have	zero	or	only	one	label.	

Labels	can	also	be	used	to	define	constraints	on	properties	or	to	add	indexes.	

You	may	also	assign	a	label	similar	to	a	vertex	to	an	edge.	Unlike	vertices,	there	is	no	edge	
without	a	label;	all	edges	should	have	at	least	one	label.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Let	us	add	Person	and	Movie	labels	to	the	existing	example	graph.	

	

Label names

Label	names	can	be	expressed	using	letters	and	numbers,	all	converted	to	lowercase	letters.	

		
Labels	stores	a	unique	id	of	int	type,	which	means	that	the	database	may	contain	up	to	
2^16-1(65535)	labels.	

Traversal

Traversal	is	to	traverse	paths	while	exploring	a	graph	to	answer	the	requested	query.	
Traversal	is	a	process	of	searching	for	the	relevant	vertices	from	start	vertex	to	find	the	
answer	to	the	requested	query.	In	other	words,	it	refers	to	following	the	vertices	that	are	
traversing	the	graph	and	the	derived	edges	according	to	a	specific	rule.	

In	the	examples	illustrated	so	far,	we	try	to	find	a	movie	featured	by	Tom	Hanks.	Starting	
with	the	Tom	Hanks	vertex,	you	can	traverse	all	the	processes	that	end	at	the	vertex	of	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Forrest	Gump	along	the	ACTED_IN	edge	associated	with	it.	

	

By	using	the	traversal	of	cypher	query	statements	and	additional	techniques	in	the	graph	
database,	you	may	derive	better	result	data.	For	more	information,	see	Cypher	Query	
Language.	

Paths

Paths	are	the	result	data	of	a	query	statement	or	traversal,	which	shows	one	or	more	
vertices	and	the	edges	connected	to	them.	

The	path	(traversal	result	data)	from	the	previous	example	is	as	follows:	

	

The	length	of	the	above	path	is	1.	The	shortest	path	length	is	0,	which	is	the	case	when	a	
single	vertex	does	not	have	edges.	

	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

If	the	vertex	has	an	edge	pointing	to	itself,	the	length	of	path	is	1.	

	

	

Get Started

Install AgensGraph

Pre-Installation on Linux

Get the pre-compiled binary

AgensGraph	works	on	Linux/Windows	and	can	be	installed	in	two	ways.	One	is	to	
download	its	binary	package,	and	the	other	is	to	download	its	source	code	and	compile	the	
package.	The	binary	package	can	be	downloaded	from	the	SKAI	worldwides's	website,	and	
the	source	code	can	be	downloaded	from	github.	If	you	want	to	know	your	system	
environment,	enter	the	following	command	in	the	command	window.	

uname -sm	

Extract the package

Unzip	the	downloaded	file	in	the	desired	location.	(e.g.:	/usr/local/AgensGraph/)	

tar xvf /path/to/your/use	

Post-Installation Setup and Configuration

Setting environment variables (Optional)

Add	the	following	three	lines	to	your	shell	startup	file	(e.g.	.bash_profile).	

export LD_LIBRARY_PATH=/usr/local/AgensGraph/lib:$LD_LIBRARY_PATH	
export PATH=/usr/local/AgensGraph/bin:$PATH	
export AGDATA=/path/to/make/db_cluster	

https://bitnine.net/agensgraph-downloads/
https://github.com/bitnine-oss/agensgraph

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Creating a database cluster

Create	a	database	cluster	using	the	following	command:	If	you	do	not	specify	the	-D	option,	
use	the	AGDATA	specified	in	.bash_profile.	

initdb [-D /path/to/make/db_cluster]	

Starting the server

You	can	start	AgensGraph	with	the	following	command.	

ag_ctl start [-D /path/created/by/initdb]	

Creating a database

createdb [dbname]	

If	you	do	not	specify	the	database	name	and	user	name,	the	default	value	will	apply.	The	
default	is	the	name	of	the	current	user.	

Running a terminal

agens [dbname]	

When	you	run	a	terminal	like	above,	you	can	see	the	following	screen:	

username=#	

If	it	is	a	super	user,	"=	#"	will	be	displayed	at	the	prompt;	"=>"	will	be	displayed	for	other	
users.	

username=# CREATE	
username-# (
username(# (
username(#)	
username(#)	
username-#	

In	case	you	are	in	the	middle	of	entering	a	query,	-	is	displayed.	If	you	are	typing	content	to	
be	included	in	parentheses,	(is	displayed.	Even	multi-parentheses	can	be	expressed	as	
needed.	You	may	customize	the	input	prompt,	and	the	detailed	options	can	be	found	in	the	
following	link.	

Setting server parameters

AgensGraph	enables	you	to	configure	the	server	to	improve	performance.	Setting	the	
server	parameters	in	consideration	of	the	size	of	data	and	resources	of	the	server	(memory,	
CPU,	disk	size,	and	speed)	is	critical	for	improvement	of	performance.	The	following	server	

https://www.postgresql.org/docs/9.6/static/app-psql.html#APP-PSQL-PROMPTING

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

variables	have	a	significant	effect	on	AgensGraph's	graph	query	performance.	You	may	
change	server	parameters	by	changing	$AGDATA/postgresql.conf.	If	you	modify	
$AGDATA/postgresql.conf,	you	need	to	restart	the	server.	

• shared_buffers:	Memory	size	for	data	object	caching.	This	variable	must	conform	to	
the	product	environment.	It	is	optimal	when	this	variable	is	as	large	as	the	size	of	data.	
shared_buffers	should	be	set	carefully	considering	the	amount	of	memory	allocated	for	
concurrent	sessions	and	each	query.	The	recommended	value	is	half	the	physical	
memory.	

• work_mem:	Increases	in	size	depending	on	the	physical	memory	and	the	attributes	of	
the	query	being	executed.	

• random_page_cost:	A	parameter	for	query	optimization.	This	parameter	should	be	
lowered	to	1	or	0.005	for	graph	queries	(when	the	graph	data	is	completely	cached	in	
memory)	

Get started with Cypher
This	section	introduces	Cypher	and	the	followings:	

• Basic	understanding	on	graphs	and	patterns	
	

• Simple	troubleshooting	
	

• Cypher	syntax	writing	

About Cypher

AgensGraph	supports	Cypher,	a	query	language,	for	retrieving	and	processing	graph	data.	
Cypher	is	a	declarative	language	similar	to	SQL.	

Pattern

AgensGraph's	graph	consists	of	vertices	and	edges.	Vertices	and	edges	can	have	many	
properties.	The	actual	data	consists	of	simple	graphs	in	patterns.	AgensGraph	searches	and	
processes	the	patterns	of	graphs	through	cypher.	

Creating Graphs

AgensGraph	may	store	multiple	graphs	in	a	single	database.	Cypher	cannot	figure	out	
multiple	graphs.	AgensGraph	supports	variables	for	generating	and	managing	graphs	using	
DDL	and	Cypher.	The	following	syntax	generates	a	graph	called	network	and	sets	the	
current	graph.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

CREATE GRAPH network;	
SET graph_path = network;	

In	this	example,	the	graph_path	variable	is	set	to	network.	However,	if	graph_path	is	not	
set	before	creating	a	graph,	it	will	be	set	automatically	after	a	graph	is	generated.	

Creating Users

CREATE ROLE user1 LOGIN IN ROLE graph_owner;	
DROP ROLE user1;	

You	can	create	new	users	to	manage	ownership	and	other	privileges	on	database	objects.	If	
a	new	user	wants	to	generate	a	label	in	the	graph,	the	new	user	must	be	in	the	same	group	
as	the	user	who	created	the	graph.	See	this	link	for	more	options	regarding	creating	users.	

Creating Labels

You	should	generate	a	label	before	generating	graph	data	in	principle.	However,	for	your	
convenience,	a	label	will	be	automatically	created	if	it	is	specified	when	Cypher's	CREATE	is	
executed.	In	AgensGraph,	you	should	have	one	label	for	a	vertex	and	an	edge.	The	following	
example	creates	a	vertex	label	named	person	and	an	edge	label	knows.	

CREATE VLABEL person;	
CREATE ELABEL knows;	
CREATE (n:movie {title:'Matrix'});	

Creating Vertices and Edges

This	section	uses	CREATE	of	Cypher	to	create	the	person	vertex	and	knows	edge.	The	CREATE	
clause	creates	a	pattern	consisting	of	vertices	and	edges.	(variable:label {property:
value, ...})	is	a	vertex	type,	and			
-[variable:label {property: value, ...}]-	is	an	edge	type.	The	direction	of	the	edge	
can	be	represented	by	<	or	>.	Variables	may	or	may	not	exist	in	the	forms	of	vertices	and	
edges.	

Note : AgensGraph does not support -- in edge patterns. -- means a comment at the end of a sentence.

In	the	following	example,	patterns	such	as	"Tom	knows	Summer,"	"Pat	knows	Nikki"	and	
"Olive	knows	Todd"	are	created.	

CREATE (:person {name: 'Tom'})-[:knows]->(:person {name: 'Summer'});	
CREATE (:person {name: 'Pat'})-[:knows]->(:person {name: 'Nikki'});	
CREATE (:person {name: 'Olive'})-[:knows]->(:person {name: 'Todd'});	

AgensGraph	uses	the	jsonb	type	for	vertex/edge	attributes.	Attributes	are	expressed	using	
JSON	objects.	

https://www.postgresql.org/docs/9.6/static/sql-createrole.html

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	

Cypher Query Language

Introduction

Cypher is

A	graph	query	language	for	querying	graph	data.	The	main	features	are	as	follows:	

• Declarative	
Cypher	is	a	declarative	language	that	describes	what	it	is,	rather	than	how	it	should	be	
done.	In	contrast	to	imperative	languages	that	specify	algorithms	to	be	executed,	such	
as	C	and	Java,	Cypher	specifies	goals.	This	type	of	processing	relieves	the	user	of	the	
detailed	implementation	of	the	query.	This	type	of	processing	relieves	the	burden	of	
detailed	implementation	in	user	queries.	
	

• Pattern	Matching	
Cypher	is	a	language	that	illustrates	the	graph	data	that	you	are	looking	for.	The	graph	
pattern	to	be	searched	is	expressed	by	using	parentheses	and	dashes	as	ASCII	Art,	and	
the	graph	data	matching	the	pattern	is	found.	You	can	create	queries	in	an	intuitive	
manner	because	it	allows	you	to	draw	the	form	you	want	to	search.	

• Expressive	
Cypher	borrowed	various	processing	methods	for	expressive	queries.	Most	keywords	
such	as	WHERE	and	ORDER	BY	are	borrowed	from	SQL,	pattern	matching	from	
SPARQL,	and	the	collection	concept	from	languages	such	as	Haskell	and	Python.	This	
makes	it	possible	for	you	to	express	queries	in	an	easy	and	simple	manner.	

Elements of Cypher

The	basic	elements	of	Cypher	include	vertex,	edge,	vlabel,	elabel,	property,	and	variable.	

• Vertex		
The	most	basic	element	that	constructs	a	graph,	representing	an	entity.	Even	if	
vertices	are	mostly	used	to	represent	entities,	their	uses	can	vary	depending	on	the	
purposes.	

• Edge		
Represents	the	relationship	between	vertices	and	cannot	exist	as	an	edge	alone.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• Vlabel		
A	specific	name	given	by	the	user	to	be	a	criterion	for	classifying	vertices.	

• Elabel	
The	name	of	the	edge;	it	represents	the	relationship	between	vertices.	

• Property		
An	attribute	that	can	be	assigned	individually	to	a	vertex	or	edge.	

• Variable		
An	identifier	that	is	assigned	arbitrarily	to	a	vertex	or	an	edge.	

Handling Graph

Before	describing	Cypher	in	detail,	let's	look	at	how	to	use	it.	We	will	show	you	how	to	
create	a	graph,	query	the	graph,	and	modify	the	graph.	

Creating Graph

AgensGraph	is	capable	of	storing	multiple	graphs	within	a	single	database.	Thus,	you	
should	first	create/select	graphs	to	use	to	enable	graph	query	using	Cypher.	

• Create	Graph	

	 CREATE GRAPH graphName;	
SET graph_path = graphName;	

	 CREATE GRAPH	is	a	command	to	create	a	graph.	The	command	is	used	along	with	the	
name	of	the	graph	to	be	generated	(Spaces	are	allowed	in	graphName	from	v1.3).	
graph_path	is	a	variable	to	handle	the	current	graph.	Set	the	name	of	the	graph	you	
want	to	handle	using	SET.	

• Drop	Graph	

	 DROP GRAPH graphname CASCADE; 	

	 DROP GRAPH	is	a	command	to	delete	a	graph	from	graph	database.	To	be	noticed,	a	
graph	automatically	contains	vertex	and	edge	labels	when	it	is	created,	so	to	delete	a	
graph	you	first	must	delete	labels	which	are	bound	to	that	graph.	To	delete	a	graph	
and	its’	labels	altogether,	use	DROP GRAPH	graphname	CASCADE.	

• Create	Labels	

	 CREATE VLABEL vlabelName;	
CREATE ELABEL elabelName;	
	
CREATE VLABEL childVlabelName inherits (parentVlabelName);	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

CREATE ELABEL childElabelName inherits (parentElabelName1, parentElabelNa
me2);	

	 CREATE VLABEL	creates	vlabel,	and	CREATE ELABEL	creates	elabel.	Each	command	is	
used	along	with	the	name	of	vlabel	or	elabel	to	generate.	
inherits()	is	a	command	that	inherits	another	label.	When	you	create	a	label,	you	can	
inherit	other	labels	by	specifying	the	names	of	the	parent	labels	along	with	the	
corresponding	keyword	after	the	child	label	name.	There	can	be	multiple	parent	labels	
for	inheritance.	

• Drop	Labels	

	 DROP VLABEL vlabelName;	
DROP ELABEL elabelName;	
	
DROP ELABEL elabelName CASCADE;	

	 DROP VLABEL	deletes	vlabel	and	DROP ELABEL	deletes	elabel.	Each	command	should	be	
used	with	the	names	of	vlabel	and	elabel	you	wish	to	erase.	A	vlabel	that	is	inherited	
by	other	vlabels	cannot	be	deleted	directly,	so	you	must	use	CASCADE	command	to	
delete	all	dependant	data.	

• Create	vertices	and	edges	

	 CREATE (:person {name: 'Jack'});	
CREATE (:person {name: 'Emily'})-[:knows]->(:person {name: 'Tom'});	

	 The	CREATE	clause	is	used	to	create	vertices	and	edges.	When	using	this	command,	
make	sure	to	write	vertices	or	edges	to	generate	correctly	using	pattern.	(The	pattern	
that	represent	various	clauses	and	vertices/edges	along	with	the	CREATE	clause	will	
be	described	in	detail	later	on).	

Querying Graph

Querying	graph	is	the	process	of	getting	information	you	need	from	the	graph(s)	by	
describing	some	specific	graph	pattern	and	finding	it	in	that	graph.	

MATCH (:person {name: 'Jack'})-[:likes]->(v:person)	
RETURN v.name;	
	
name	

Emily	
(1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

The	MATCH	clause	finds	graph	data	that	matches	the	pattern	in	the	clause.	In	the	RETURN	
clause,	specify	only	the	elements	that	you	want	to	return	from	the	graph	you	find.	

Manipulating Graph

In	order	to	modify	the	existing	graph	data,	the	pattern	of	the	MATCH	clause	should	be	
displayed;	after	finding	the	matched	graph,	modifications	can	be	made	to.	

MATCH (v:person {name: 'Jack'})	
SET v.age = '24';	

You	can	use	the	SET	clause	to	set	property	values	of	vertices	and	edges.	

Data Type
This	section	describes	the	graph	data	types	such	as	graphid,	graphpath,	vertex,	and	edge.	
Each	data	type	is	specified	below.	

Name	 Size	 Description	

graphid	 8	 unique	ID	of	vertex/edge	

graphpath	 tuple	 Array	of	consecutive	vertices	and	edges	

vertex	 tuple	 A	tuple	that	combines	id	and	properties	

edge	 tuple	 A	tuple	that	combines	start	vertex	id,	
end	vertex	id,	edge	id	and	properties	

graphid

An	unique	ID	that	is	assigned	to	the	newly-created	label	of	vertex/edge.	Graphid	is	
generated	based	on	the	labid	of	ag_label	and	the	sequence	values	of	vertex	and	edge.	

graphpath

An	array	type	of	continuous	vertices	and	edges.	

Column	 Type	 Description	

vertices	 vertex[]	 	

edges	 edge[]	 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

vertex

vA	vertex	has	a	vertex	id	and	properties	

Column	 Type	 Description	

id	 graphid	 vertex	id	

properties	 jsonb	 vertex	property	

edge

An	edge	connects	vertices,	and	has	edge	id,	start	vertex	id,	end	vertex	id,	and	properties.	

Column	 Type	 Description	

id	 graphid	 edge	id	

start	 graphid	 start	vertex	id	

end	 graphid	 end	vertex	id	

properties	 jsonb	 edge	property	

Syntax

Pattern

A	pattern	is	an	expression	that	represents	a	graph.	As	a	pattern	is	represented	by	a	
combination	of	one	or	more	vertices	or	edges,	how	you	create	vertices	and	edges	as	a	
pattern	is	critical.	

Vertex

Vertex	is	expressed	using	parentheses,	and	can	be	specified	with	vlabel,	property,	and	
variable	to	further	refine	the	vertex	to	be	searched.	

()	

Vertex	is	represented	by	().	A	pattern	that	does	not	have	vlabel	or	property	in	
parentheses,	as	in	the	example	above,	means	all	vertices.	

(:person)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

To	represent	vlabel	in	a	vertex,	use	(:vlabelName).	The	name	of	vlabel	is	indicated	with	a	
colon	in	parentheses	indicating	the	vertex.	The	above	example	represents	a	vertex	with	
vlabel	named	"person."	

(v)	
(var)	
(var_1)	
(v:person)	

If	you	want	to	assign	a	variable	to	the	vertex,	use	(variableName).	A	variable	can	be	named	
a	combination	of	alphanumeric	(a~z,	0~9)	and	underbars	(note	that	it	should	not	start	
with	a	number).	When	you	want	to	display	the	variable	and	vlabel	at	the	same	time	in	
vertex,	use	(variableName: vlabelName).	

({name: 'Jack'})	
(v:person {name: 'Jack'})	
(v:person {name: 'Jack', age: 24})	

You	can	further	refine	the	properties	by	listing	them	in	the	vertex.	If	you	want	to	represent	
a	property,	use			
({propertyName:propertyValue}).	If	the	value	is	a	string,	the	value	must	be	wrapped	with	
‘	’.	If	you	want	to	represent	multiple	properties,	,	should	be	used.	

Edge

An	edge	is	expressed	with	two	dashes,	and	can	be	marked	along	with	elabel,	property,	and	
variable.	

-[]-	
-[]->	
<-[]-	

An	edge	is	expressed	using	-[]-.	You	can	express	direction	with	< >.	In	the	above	example,	
-[]-	expressed	as	dashes	only	means	"all	edges"	since	no	constraint	is	indicated.	-[]->	<-[]-	
with	additional	angle	brackets	means	"all	edges	with	one	directionality."	

-[:knows]->	

If	you	want	to	express	other	elements	in	the	edge,	specify	them	in	[].	If	you	want	to	
represent	elabel	on	the	edge,	use	-[:elabelName]->.	The	above	example	means	an	edge	
with	elabel	named	"knows."	

-[e]->	
-[e:likes]->	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

If	you	want	to	assign	a	variable	to	an	edge,	use	-[variableName]->.	When	you	want	to	
display	variable	and	elabel	simultaneously	on	the	edge,	use	-[variableName:elabelName]-
>.	

-[{why: 'She is lovely'}]->	
-[:likes {why: 'She is lovely'}]->	
-[e:likes {why: 'She is lovely'}]->	

If	you	want	to	represent	a	property	on	the	edge	use	-[{propertyName:propertyValue}]->.	
If	the	value	is	a	string,	use	‘	’	.	If	you	want	to	represent	multiple	properties,	,should	be	used.	

Vertices and Edges

Patterns	can	be	used	to	express	vertices,	edges,	or	a	combination	of	them.	

()-[]->()	
(jack:person {name: 'Jack'})-[k:knows]->(emily:person {name: 'Emily'})	
p = (:person)-[:knows]->(:person)	

The	basic	frame	of	a	pattern	consisting	of	a	combination	of	vertices	and	edges	is	()-[]-
>().	It	is	good	to	give	meaning	to	the	pattern	by	specifying	properties	and	labels	on	
vertices	and	edges.	Variables	can	be	assigned	to	individual	vertices	and	edges,	or	the	entire	
pattern.	If	you	want	to	assign	a	variable	to	the	entire	pattern,	use	=.	In	the	above	example,	p	
is	a	variable	and	is	applied	to	the	entire	pattern	by	using	=.	

Path

The	number	of	vertices	and	edges	in	a	pattern	may	continue	to	increase.	The	unit	for	a	
series	of	path	in	a	pattern	is	called	a	path.	

(a)-[]->()-[]->(c)	
(a)-[*2]->(c)	
	
(a)-[]->()-[]->()-[]->(d)	
(a)-[*3]->(d)	
	
(a)-[]->()-[]->()-[]->()-[]->(e)	
(a)-[*4]->(e)	

In	the	case	of	a	long	path,	it	can	be	written	in	abbreviated	form	for	better	readability	and	
ease	of	writing.	If	n	vertices	go	through	an	edge	n-1	times,	you	can	put	an	asterisk	(*)	and	n-
1	in	brackets	(see	example	above).	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Flexible Length

Depending	on	the	situation,	you	may	need	to	dynamically	change	the	number	of	edges	that	
must	be	gone	through	in	a	query.	

(a)-[*2..]->(b)	
(a)-[*..7]->(b)	
(a)-[*3..5]->(b)	
(a)-[*]->(b)	

If	you	want	to	give	a	dynamic	change	to	the	length	of	the	path,	..	can	be	used.	The	example	
above	shows	a	path	with	two	or	more	edges,	a	path	with	seven	or	fewer	paths,	a	path	with	
three	or	more	and	five	or	fewer	paths,	and	an	infinite	path	(in	sequence	from	top	to	
bottom).	

Clauses

Read Clauses

MATCH

The	MATCH	clause	is	a	clause	that	describes	the	graph	pattern	you	want	to	find	in	the	
database.	This	is	the	most	basic	way	to	import	data.	For	more	information	on	the	Pattern	
specification,	see	the	Pattern	section	above.	

• Mathing	

	 MATCH (j {name: 'Jack'})	
RETURN j;	
	
MATCH (j {name: 'Jack'})-[l:knows]->(e)	
RETURN l;	
	
MATCH (j {name: 'Jack'})	
RETURN j.age;	
	
MATCH p=(j {name: 'Jack'})-[l:knows]->(e)	
RETURN p;	

	 The	graph	pattern	to	be	searched	is	described	in	the	MATCH	clause	and	then	returned	
using	the	RETURN	clause.	

• Various	Notation	

	 MATCH (j:person {name: 'Jack'})-[:knows]->(v:person)	
MATCH (e:person {name: 'Emily'})-[:knows]->(v)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

RETURN v.name;	
	
MATCH (j:person {name: 'Jack'})-[:knows]->(v:person), 	
 (e:person {name: 'Emily'})-[:knows]->(v)	
RETURN v.name;	
	
MATCH (j:person {name: 'Jack'})-[:knows]->(v:person)<-[:knows]-(e:person
{name: 'Emily'})	
RETURN v.name;	

	 The	above	three	queries	output	the	names	of	common	acquaintances	of	Jack	and	Emily.	
They	all	output	the	same	result,	but	the	number	of	MATCH	clauses	and	the	pattern	
notations	in	the	MATCH	clause	are	different.	The	first	query	used	the	MATCH	clause	
twice,	while	the	second	query	expressed	two	patterns	using	a	comma	in	one	MATCH	
clause;	the	third	query	used	one	pattern	in	one	MATCH	clause.	Likewise,	you	can	use	
the	MATCH	clause	in	a	variety	of	ways	to	derive	the	same	result.	

	 When	you	generate,	query,	delete,	add,	or	modify	a	graph	data,	you	will	need	to	find	a	
graph	that	matches	a	certain	pattern	first	in	most	cases.	Thus,	the	MATCH	clause	is	a	
very	basic	and	important	clause.	
		
	[Reference]	

	 When	a	large	volume	of	data	across	multiple	pages	are	printed	in	Agens,	you	may	see	
help	on	scrolling	by	using	the	?	keyword.	

	 Most commands optionally preceded by integer argument k. Defaults in bra
ckets.	
Star (*) indicates argument becomes new default.	

<space> Display next k lines of text [current screen size]	
z Display next k lines of text [current screen size]
*	
<return> Display next k lines of text [1]*	
d or ctrl-D Scroll k lines [current scroll size, initially 11]
*	
q or Q or <interrupt> Exit from more	
s Skip forward k lines of text [1]	
f Skip forward k screenfuls of text [1]	
b or ctrl-B Skip backwards k screenfuls of text [1]	
' Go to place where previous search started	
= Display current line number	
/<regular expression> Search for 'k'th occurrence of regular expression
 [1]	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

n Search for 'k'th occurrence of last r.e [1]	
!<cmd> or :!<cmd> Execute <cmd> in a subshell	
v Start up /usr/bin/vi at current line	
ctrl-L Redraw screen	
:n Go to kth next file [1]	
:p Go to kth previous file [1]	
:f Display current file name and line number	
. Repeat previous command	

--	

Shortest Path

• Single	Shortest	Path	
Finding	a	single	shortest	path	between	two	vertices	using	shortestpath	function.	

	 MATCH p = shortestpath((j:person {name: 'Jack'})-[l:knows*..15]-(a:perso
n {name: 'Alice'}))	
RETURN p;	

	 Find	single	shortest	path	between	two	vertices,	Alice	and	Jack,	between	which	15	
edges	exist.	Feed	a	graph	path	consists	of	the	start	vertex,	the	end	vertex,	and	the	
edges	between	them	(single	link	path)	into	the	function	as	its	argument.	Edge	type,	
max	hops	and	directions	are	all	used	in	finding	the	shortest	path.	

• All	Shortest	Paths	
Find	all	the	shortest	paths	between	two	vertices.	

	 MATCH p = allshortestpaths((j:person {name: 'Jack'})-[l:knows*]-(a:perso
n {name: 'Alice'}))	
RETURN p;	

	 Find	all	the	shortest	paths	between	two	vertices.	Alice	and	Jack.	

OPTIONAL MATCH

The	OPTIONAL	MATCH	clause,	like	the	MATCH	clause,	is	a	clause	describing	the	graph	
pattern	to	be	searched.	The	OPTIONAL	MATCH	clause	differs	from	the	MATCH	clause	in	
that	it	returns	NULL	if	there	are	no	results	to	return.	

• Optional	Matching	

	 OPTIONAL MATCH (e:person {name:'Emily'})	
RETURN e.hobby;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 The	use	of	the	OPTIONAL	MATCH	clause	is	the	same	as	the	MATCH	clause.	Put	the	
pattern	you	want	to	find	in	the	OPTIONAL	MATCH	clause	and	return	the	result	
through	the	RETURN	clause.	The	returned	result	may	contain	NULL.	

MATCH ONLY

The	Only	keyword	allows	you	to	use	the	MATCH	query	to	return	results	that	exclude	child	
labels.	

• Match	only	

	 MATCH (n:person ONLY) RETURN n;	
MATCH ()-[r:knows ONLY]->() RETURN r;	

Projecting Clauses

RETURN

The	RETURN	clause	is	a	clause	that	specifies	the	result	of	a	cypher	query.	It	returns	data	
that	matches	the	graph	pattern	you	are	looking	for,	and	can	return	vertices,	edges,	
properties,	and	so	on.	

• Vertex	Return	

	 MATCH (j {name: 'Jack'})	
RETURN j;	

	 If	you	want	to	return	a	vertex,	specify	the	vertex	you	want	to	find	in	the	MATCH	clause	
and	assign	a	variable	to	it.	You	can	then	return	a	vertex	by	specifying	the	
corresponding	variable	in	the	RETURN	clause.	

• Edge	Return	

	 MATCH (j {name: 'Jack'})-[k:knows]->(e)	
RETURN k;	

	 If	you	want	to	return	an	edge,	specify	the	edge	you	want	to	find	in	the	MATCH	clause	
and	assign	a	variable	to	it.	You	can	then	return	an	edge	by	specifying	the	
corresponding	variable	in	the	RETURN	clause.	

• Property	Return	

	 MATCH (j {name: 'Jack'})	
RETURN j.age;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 If	you	want	to	return	a	property	of	a	vertex	or	edge,	specify	the	vertex	or	edge	you	
want	to	find	in	the	MATCH	clause	and	assign	a	variable	to	it.	In	the	RETURN	clause,	
you	can	return	the	property	by	specifying	.	with	the	variable	and	property.	

• All	Return	

	 MATCH (j {name: 'Jack'})-[k:knows]->(e)	
RETURN *;	

	 If	you	want	to	return	all	the	elements	in	the	MATCH	clause,	specify	*	in	the	RETURN	
clause.	The	elements	returned	are	the	elements	to	which	variables	are	assigned.	
Elements	with	no	variable	assigned	will	not	be	returned.	

• Path	Return	

	 MATCH p=(j {name: 'Jack'})-[k:knows]->(e)	
RETURN p;	

	 If	you	want	to	return	a	path	that	matches	the	pattern	shown	in	the	MATCH	clause,	you	
should	apply	a	variable	to	the	entire	pattern.	If	the	pattern	is	preceded	by	a	variable	
and	=,	the	variable	can	be	applied	to	the	entire	pattern.	You	can	then	return	the	path	
by	specifying	the	variable	in	the	RETURN	clause.	

• Alias	Return	

	 MATCH (j {name: 'Jack'})	
RETURN j.age AS HisAge;	
	
MATCH (j {name: 'Jack'})	
RETURN j.age AS "HisAge";	

	 You	can	output	an	alias	to	the	column	of	the	returned	result.	The	returned	element	is	
followed	by	an	alias	with	the	AS	keyword.	If	you	list	the	alias	without	double	quotation	
marks,	the	output	will	be	in	lower	case;	with	double	quotation	marks,	the	output	will	
be	printed	as	it	is.	

• Function	Return	

	 MATCH (j {name: 'Jack'})-[k:knows]->(e)	
RETURN id(k), properties(k);	
	
MATCH p=(j {name: 'Jack'})-[k:knows]->(e)	
RETURN length(p), nodes(p), edges(p);	
	
MATCH (a)	
RETURN count(a);	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 It	provides	a	function	to	obtain	only	id	and	properties	for	vertices	and	edges,	and	a	
function	to	get	length	and	each	element	separately	of	the	path.	You	may	also	use	the	
aggregation	function	supported	by	PostgreSQL.	

• Constant	Return	

	 RETURN 3 + 4, 'Hello ' + 'AgensGraph';	
RETURN 3 + 4 AS lucky, 'Hello ' + 'AgensGraph' AS greeting	

	 Constant	values	and	their	operators	can	be	expressed.	All	of	the	expressions	useable	in	
the	SQL	SELECT	statement	can	be	used	with	the	RETURN	clause,	except	for	table	and	
column	expressions.	For	more	information,	see	PostgreSQL	Expression.	

• Unique	Return	

	 MATCH (j { name: 'Jack' })-[k:knows]->(e)	
RETURN DISTINCT e; 	

	 Removes	the	duplicate	records	of	the	returned	result	and	outputs	only	the	unique	
result.	You	can	add	DISTINCT	before	the	returned	element.	

WITH

The	WITH	clause	is	a	clause	that	connects	multiple	cypher	queries.	It	passes	the	result	of	
the	preceding	WITH	clause	query	to	the	following	WITH	clause	query.	That	is,	the	WITH	
clause	can	be	regarded	as	a	RETURN	clause	that	passes	the	value	of	the	preceding	query	to	
the	input	of	the	following	query.	

• WITH	

	 MATCH (j:person {name:'Jack'})-[:knows]->(common:person)<-[:knows]-(other:
person)	
RETURN other, count(common);	
	
WHERE count(common) > 1	
RETURN other;	
	
MATCH (j:person {name:'Jack'})-[:knows]->(common:person)<-[:knows]-(other:
person)	
WITH other, count(common) AS cnt	
WHERE to_jsonb(cnt) > 1	
RETURN other;	

	 The	WITH	clause	is	described	as	an	example	of	the	above	three	queries.	The	first	query	
returns	the	number	of	acquaintances	that	Jack	and	'someone'	know	in	common	with	
the	'someone'.	If	we	think	the	second	query	in	line	with	the	first	query,	we	can	figure	

https://www.postgresql.org/docs/9.6/static/functions-aggregate.html
https://www.postgresql.org/docs/9.6/static/sql-expressions.html

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

out	that	it	is	a	query	that	returns	'someone'	when	the	number	of	common	
acquaintances	is	greater	than	one	(1).	The	second	query	cannot	be	executed	alone;	it	is	
only	meaningful	when	combined	with	the	first	query.	The	WITH	clause	plays	a	role	of	
connecting	the	two	queries.	

	 The	third	query	is	a	query	that	includes	a	WITH	clause	that	links	the	first	and	second	
queries.	It	holds	the	returned	results	of	the	first	query	in	variable	and	alias	forms,	and	
then	passes	the	results	to	the	second	query.	In	the	case	where	you	want	to	connect	
multiple	queries,	as	in	this	case,	and	the	output	of	the	preceding	query	is	used	as	the	
input	of	the	trailing	query,	you	can	concatenate	them	with	the	WITH	clause.	The	WITH	
clause	must	be	held	in	variable	or	alias	form.	

• Partitioning	

	 MATCH (j:person {name:'Jack'})-[:knows]->(common:person)<-[:knows]-(other:
person)	
RETURN other, count(common)	
ORDER BY other.name	
LIMIT 10;	
	
WHERE count(common) > 1	
RETURN other;	
	
MATCH (j:person {name:'Jack'})-[:knows]->(common:person)<-[:knows]-(other:
person)	
WITH other, count(common) AS cnt	
ORDER BY other.name	
LIMIT 10	
WHERE to_jsonb(cnt) > 1	
RETURN other;	

	 It	is	important	to	partition	the	entire	query	when	using	the	WITH	clause.	Think	of	the	
WITH	clause	as	a	RETURN	clause,	and	consider	ORDER	BY,	LIMIT	as	a	partition	after	
RETURN.	Therefore,	if	there	is	an	ORDER	BY,	LIMIT	clause	in	the	preceding	query,	the	
clause	must	be	written	after	the	WITH	clause,	and	then	the	following	query	is	created.	

Reading sub-Clauses

WHERE

The	WHERE	clause	is	a	clause	that	adds	constraints	to	the	MATCH	or	OPTIONAL	MATCH	
clause	or	filters	the	results	of	the	WITH	clause.	The	WHERE	clause	cannot	be	used	alone;	it	
is	dependent	on	the	MATCH,	OPTIONAL	MATCH,	START,	and	WITH	clauses	when	used.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Basic Usage

• Boolean	operations	

	 MATCH (v)	
WHERE v.name = 'Jack' AND v.age < '30' OR NOT (v.name= 'Emily' OR v.name
='Tom')	
RETURN v.name, v.age;	

	 You	can	use	the	boolean	operators	AND,	OR.	

• Filter	on	vertex	label	

	 MATCH (v)	
WHERE label(v) = 'person'	
RETURN v.name;	

	 To	filter	nodes	by	label,	write	a	label	predicate	after	the	WHERE	keyword	using	WHERE
label(n) = 'foo'.	

• Filter	on	vertex	property	

	 MATCH (v)	
WHERE v.age < '30' 	
RETURN v.name, v.age;	

	 To	filter	on	a	vertex	property.	

• Filter	on	edge	property	

	 MATCH (v)-[l:likes]->(p)	
WHERE l.why = 'She is lovely'	
RETURN p;	

	 To	filter	on	aedge	property.	

String matching

STARTS	WITH	and	ENDS	WITH	can	be	used	to	search	for	a	character	having	certain	prefix	
and	suffix	in	a	string.	You	can	use	CONTAINS	when	retrieving	a	matching	string	regardless	
of	its	position.	It	is	case-sensitive,	and	returns	null	if	a	non-string	value	is	queried.	

• Prefix	string	search	using	STARTS WITH	

	 MATCH (v)	
WHERE v.name STARTS WITH 'Em'	
RETURN v.name, v.age;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 STARTS	WITH	is	used	to	perform	a	case-sensitive	matching	at	the	beginning	of	a	string.	

• Suffix	string	search	using	ENDS WITH	

	 MATCH (v)	
WHERE v.name ENDS WITH 'ly'	
RETURN v.name, v.age;	

	 ENDS	WITH	is	used	to	perform	a	case-sensitive	matching	at	the	end	of	a	string.	

• Substring	search	using	CONTAINS	

	 MATCH (n)	
WHERE n.name CONTAINS 'il'	
RETURN n.name, n.age;	

	 CONTAINS	is	used	for	a	case-sensitive	matching	regardless	of	the	position	in	the	string.	

ORDER BY

The	ORDER	BY	clause	is	a	clause	that	sorts	result	values.	It	is	used	with	the	RETURN	clause	
or	WITH	clause	and	determines	whether	to	sort	in	ascending	or	descending	order	by	
column.	

• Order	by	Property	

	 MATCH (a:person)	
RETURN a.name AS NAME	
ORDER BY NAME;	
	
MATCH (a:person)	
RETURN a.name AS NAME, a.age AS AGE	
ORDER BY NAME, AGE;	
	
MATCH (a:person)	
RETURN a	
ORDER BY a.name;	

	 The	ORDER	BY	clause	basically	sorts	by	properties	of	vertices	and	edges.	You	may	
specify	the	aliases	of	the	properties	that	will	be	the	basis	of	sorting	in	the	ORDER	BY	
clause.	That	is,	in	the	RETURN	clause,	an	alias	is	given	to	a	property	to	be	sorted,	and	
then	the	alias	is	specified	in	the	ORDER	BY	clause.	If	multiple	sorting	criteria	are	
specified	in	the	ORDER	BY	clause,	sorting	is	done	first	based	on	the	first	criterion	and	
then	the	second	sorting	is	performed	only	for	duplicated	values	after	the	first	sorting.	
However,	if	a	property	is	not	specified	in	the	RETURN	clause,	you	can	directly	specify	
the	property	other	than	the	corresponding	alias	in	the	ORDER	BY	clause.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• Descending	Order	

	 MATCH (a:person)	
RETURN a.name AS NAME	
ORDER BY NAME DESC;	
	
MATCH (a:person)	
RETURN a.name AS NAME, a.age AS AGE	
ORDER BY NAME DESC, AGE;	

	 The	ORDER	BY	clause	basically	sorts	in	ascending	order.	If	you	want	to	sort	in	
descending	order,	you	can	write	the	DESC	keyword.	If	multiple	criteria	are	specified	in	
the	ORDER	BY	clause,	DESC	must	be	followed	by	the	elements	to	be	sorted	in	
descending	order.	

SKIP

The	SKIP	clause	is	a	clause	that	changes	the	search	start	location.	

• Skip	

	 MATCH (a)	
RETURN a.name	
SKIP 3;	

	 When	searching	for	a	pattern	in	the	MATCH	clause,	skip	the	number	of	patterns	
specified	in	the	SKIP	clause	and	start	the	search.	

LIMIT

The	LIMIT	clause	is	a	clause	that	limits	the	number	of	results	in	a	result	set.	

• Limit	Result	Set	

	 MATCH (a)	
RETURN a.name	
LIMIT 10;	

	 If	you	want	to	limit	the	number	of	results	you	want	to	output,	you	can	specify	the	
number	in	the	LIMIT	clause.	If	the	number	of	results	in	the	result	set	is	smaller	than	or	
equal	to	the	number	specified	in	the	LIMIT	clause,	all	results	will	be	output;	if	bigger,	
only	the	number	of	results	specified	in	the	LIMIT	clause	will	be	output.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Writing Clauses

CREATE

The	CREATE	clause	is	a	clause	that	creates	graph	elements	such	as	vertices	and	edges.	

• Create	Vertex	

	 CREATE ();	
CREATE (:person);	
CREATE (:person {name: 'Edward'});	
CREATE (:person {name: 'Alice', age: 20});	
CREATE (a {name:'Alice'}), (b {name:a.name});	

	 When	you	want	to	create	a	vertex,	you	need	to	write	a	vertex-related	pattern	in	the	
CREATE	clause.	When	creating	a	vertex,	you	can	create	it	by	referring	to	the	vertex	
specified	earlier	as	in	the	last	example.	

• Create	Edge	

	 MATCH (E:person {name: 'Edward'}), (A:person {name: 'Alice'})	
CREATE (E)-[:likes]->(A);	
	
MATCH (E:person {name: 'Edward'}), (A:person {name: 'Alice'})	
CREATE (E)-[:likes {why: 'She is lovely'}]->(A);	
	
MATCH (E:person {name: 'Edward'})	
CREATE (E)-[:IS_PROUD_OF]->(E);	

	 An	edge	is	a	link	between	two	vertices.	Therefore,	we	need	to	create	an	edge	after	
finding	two	vertices	through	the	MATCH	clause.	Note	that	two	vertices	do	not	
necessarily	mean	different	vertices.	Like	the	third	query	above,	self-edge	is	also	
possible.	

• Create	Path	

	 CREATE (E:person {name: 'Edward'})-[:likes]->(A:person {name: 'Alice'});	
	
MATCH (E:person {name: 'Edward'})	
CREATE (E)-[:likes]->(A:person {name: 'Alice'});	
	
MATCH (E:person {name: 'Edward'}), (A:person {name: 'Alice'})	
CREATE (E)-[:likes]->(A);	

	 You	may	create	each	element	separately,	but	you	may	also	create	a	pattern	you	want	
at	a	time	by	listing	the	path	in	the	CREATE	clause.	Be	careful	when	creating	a	path	at	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

once.	If	it	is	not	used	with	the	MATCH	clause	like	the	first	query,	it	creates	a	new	data	
even	if	there	is	the	same	data	as	the	corresponding	pattern	(i.e.	duplicate	data).	If	you	
use	it	with	a	MATCH	clause	like	the	second	query,	it	finds	the	Edward	vertex	and	then	
creates	the	likes	edge	on	the	vertex	and	Alice	vertex.	If	you	want	to	create	only	the	
likes	edges	in	existing	Edward	and	Alice	vertices,	you	can	use	it	like	the	third	query.	

DELETE

The	DELETE	clause	is	a	clause	that	removes	vertices	or	edges.	

• Delete	vertex	

	 MATCH (m:person {name: 'Michael'})	
DELETE m;	

	 Find	the	vertices	you	want	to	remove	through	the	MATCH	clause	and	remove	them	by	
marking	corresponding	variables	in	the	DELETE	clause.	However,	if	the	vertices	you	
want	to	remove	are	connected	to	other	vertices	and	edges,	remove	the	edges	first	
before	removing	the	vertices.	

• Delete	edge	

	 MATCH (m:person {name: 'Michael'})-[l:likes]->(b:person {name: 'Bella'})	
DELETE l;	

	 Find	the	edges	you	want	to	remove	with	the	MATCH	clause	and	remove	them	by	
marking	corresponding	variables	in	the	DELETE	clause.	

DETACH DELETE

• Delete	a	vertex	with	all	its	relationships	

	 MATCH (m:person {name: 'Michael'})	
DETACH DELETE m;	

	 If	the	DETACH	keyword	is	used	together,	the	edges	associated	with	the	vertices	are	
also	removed.	If	the	vertices	you	want	to	remove	are	linked	to	other	vertices	and	edges,	
you	may	skip	the	edge-removing	process.	

SET

The	SET	clause	is	a	clause	that	adds,	sets,	or	removes	properties,	or	adds	vlabels.	

• Add	Property	

	 MATCH (E:person {name: 'Edward'})	
SET E.habit = 'play the guitar';	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 Find	the	vertices	or	edges	to	which	you	want	to	add	properties	through	the	MATCH	
clause,	and	specify	the	names	and	values	of	the	properties	to	add	to	the	SET	clause.	
When	describing	a	property,	mark	it	with	single	or	double	quotation	marks.	

• Modify	Property	

	 MATCH (E:person {name: 'Edward'})	
SET E.name = 'Edward Williams';	

	 Find	the	vertices	or	edges	whose	properties	you	want	to	change	through	the	MATCH	
clause,	and	specify	the	names	of	the	properties	to	be	changed	in	the	SET	clause.	When	
describing	a	property,	mark	it	with	single	or	double	quotation	marks.	

• Remove	Property	

	 MATCH (E:person {name: 'Edward'})	
SET E.hobby = NULL;	

	 Find	the	vertices	or	edges	from	which	you	want	to	remove	the	properties	through	the	
MATCH	clause,	and	mark	the	names	of	the	properties	to	be	removed	and	NULL	in	the	
SET	clause.	

• Copy	properties	between	nodes	and	relationships	

	 MATCH (at {name:'Edward'}), (pn {name: 'Peter'})	
SET at = pn	
RETURN at.name, at.age, pn.name, pn.age;	

	 SET	can	be	used	to	copy	all	properties	from	one	vertex/edge	to	another	vertex/edge.	
All	properties	of	"pn"	are	copied	to	the	properties	of	"at",	and	all	existing	properties	of	
"at"	are	removed.	

• Replace	all	properties	using	a	map	and	=	

	 MATCH (p { name: 'Edward' })	
SET p = { name: 'Edward William', position: 'Enterpreneur' }	
RETURN p.name, p.age, p.position;	

	 Use	the	=	operator	to	replace	the	existing	properties	of	the	vertex/edge	with	the	
properties	provided	by	the	map.	

• Remove	all	properties	using	an	empty	map	and	=	

	 MATCH (p { name: 'Edward' })	
SET p = { }	
RETURN p.name, p.age, p.position;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 Use	the	=	operator	to	remove	all	existing	properties	of	the	vertex/edge.	

• Mutate	specific	properties	using	a	map	and	+=	

	 MATCH (p { name: 'Edward' })	
SET p += { age: 38, hungry: TRUE, position: 'Enterpreneur' }	
RETURN p.name, p.age, p.hungry, p.position;;	

	 Use	the	+=	operator	to	change	existing	properties	of	the	vertex/edge	or	add	new	ones.	
The	properties	of	the	vertex	and	edge	is	not	removed	if	the	map	is	empty	as	shown	
below.	

	 MATCH (p { name: 'Edward' })	
SET p += { }	
RETURN p.name, p.age, p.hungry, p.position;	

• Set	multiple	properties	using	one	SET	clause	

	 MATCH (n { name: 'Peter' })	
SET n.position = 'Developer', n.surname = 'Taylor';	

	 Sets	multiple	properties	at	once	by	separating	them	with	commas	(,).	

REMOVE

The	REMOVE	clause	is	a	clause	that	removes	properties.	

• Remove	property	

	 MATCH (E:person {name: 'Edward'})	
SET E.habit = NULL;	
	
MATCH (E:person {name: 'Edward'})	
REMOVE E.habit;	

	 How	to	remove	a	property	using	the	SET	clause	has	already	been	described	in	SET.	
You	can	also	remove	a	property	using	the	REMOVE	clause.	
Locate	the	element	from	which	you	want	to	remove	the	property	through	the	MATCH	
clause,	and	name	the	property	to	be	removed	in	the	REMOVE	clause.	

Reading/Writing Clauses

MERGE

The	MERGE	clause	is	a	clause	that	i)	adds	a	corresponding	pattern	(like	the	CREATE	clause)	
if	the	specified	pattern	does	not	exist	in	the	graph,	and	ii)	verifies	existence	of	the	pattern	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

(like	the	Match	clause)	if	it	already	exists	in	the	graph.	The	MERGE	clause	recognizes	the	
entire	pattern	specified	in	the	clause.	

• Merge	

	 MERGE (:person {name: 'Edward'});	
	
MATCH (p:person {name: 'Edward'}) RETURN p;	
	
CREATE (:person {name: 'Edward'});	

	 If	you	specify	a	pattern	in	the	MERGE	clause	and	execute	it,	you	can	see	whether	the	
pattern	exists	or	not	in	the	graph.	If	it	is	already	in	the	graph,	it	functions	like	the	
MATCH	clause;	if	it	is	not	in	the	graph,	it	newly	creates	the	pattern	like	the	CREATE	
clause.	

• Merge	Path	

	 MERGE (E:person {name: 'Edward'})-[L:likes]->(A:person {name: 'Alice'})	
RETURN E, L, A;	
	
MERGE (E:person {name: 'Edward'})	
MERGE (A:person {name: 'Alice'})	
MERGE (E)-[L:likes]->(A)	
RETURN E, L, A;	

	 The	MERGE	clause	recognizes	the	entire	pattern.	Even	if	the	specified	pattern	partially	
exists	in	the	graph,	it	does	not	create	only	the	rest	of	it	that	does	not	exist.	We	will	
explain	this	with	the	above	query	as	an	example.	The	first	query	does	not	create	an	
edge	if	the	Edward	and	Alice	vertices	already	exist	in	the	graph	and	are	not	linked	to	
the	likes	edge.	New	Edward	and	Alice	vertices	are	created	and	an	edge	is	created	
between	the	two	vertices.	
If	you	are	not	sure	whether	some	elements	of	the	pattern	already	exist	in	the	graph,	
you	had	better	divide	each	element	as	in	the	second	query	and	use	the	MERGE	clause.	

• ON	CREATE	SET	and	ON	MATCH	SET	

	 MERGE (E:person {name: 'Edward'})	
ON CREATE SET E.lastMERGEOP = 'CREATE'	
ON MATCH SET E.lastMERGEOP = 'MATCH'	
RETURN E.lastMERGEOP;	

	 ON	CREATE	SET	and	ON	MATCH	SET	clauses	can	be	used	to	set	properties	depending	
on	how	the	MERGE	clause	behaves.	If	the	MERGE	clause	behaves	like	a	CREATE	clause,	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

the	ON	CREATE	SET	clause	will	be	performed;	if	the	MERGE	clause	behaves	like	a	
MATCH	clause,	the	ON	MATCH	SET	clause	will	be	performed.	

Set operations

UNION and UNION ALL

The	UNION	clause	combines	the	results	of	several	queries	into	one.	

• UNION	and	UNION	ALL	

	 MATCH (a:person)	
WHERE 20 < a.age	
RETURN a.name AS name	
UNION	
MATCH (b:person)	
WHERE b.age < 50	
RETURN b.name AS name;	
	
MATCH (a:person)	
WHERE 20 < a.age	
RETURN a.name AS name	
UNION ALL	
MATCH (b:person)	
WHERE b.age < 50	
RETURN b.name AS name;	

	 If	you	put	the	UNION	keyword	between	the	two	queries,	you	can	combine	the	two	
results	together.	In	the	case	of	duplicate	values,	UNION	outputs	it	only	once.	When	you	
use	both	the	UNION	and	ALL	keywords,	the	duplicate	values	(when	the	two	results	are	
combined)	will	be	output	as	they	are.	

LOAD Clauses

LOAD FROM

You	can	load	data	by	table	using	the	LOAD	FROM	clause.	

• create	vertex	

	 LOAD FROM person AS v	
CREATE (:person {id: v.id, name: v.name});	

• create	edge	

	 LOAD FROM friend AS e	
MATCH (a:person),(b:person)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

WHERE id(a) = to_jsonb(e.start_id) 	
 AND id(b) = to_jsonb(e.end_id)	
CREATE (a)-[:friend {date: '2018'}]->(b);	

Schema Clauses

CREATE and DROP CONSTRAINT

Provides	the	ability	to	control	data	by	setting	constraints	on	properties.	

• CREATE	and	DROP	CONSTRAINT	

	 CREATE CONSTRAINT [constraint_name] ON label_name ASSERT field_expr IS UN
IQUE	
CREATE CONSTRAINT [constraint_name] ON label_name ASSERT check_expr	
DROP CONSTRAINT constraint_name ON label_name	
	
CREATE CONSTRAINT ON person ASSERT id IS UNIQUE;	
CREATE CONSTRAINT ON person ASSERT name IS NOT NULL;	
CREATE CONSTRAINT ON person ASSERT age > 0 AND age < 128;	

	 If	the	constraint	name	is	omitted,	it	is	generated	automatically.	
UNIQUE	restricts	the	value	of	a	field	to	be	unique	in	that	label.	
check_expr	returns	a	true	or	false	value	of	the	properties	that	are	newly-entered	or	
modified.	If	the	result	is	false,	the	corresponding	input/change	will	fail.	
You	may	use	\dGv,	\dGe	commands	to	check	the	constraints	when	querying	
information	on	the	vertices	and	edges.	

	 CREATE VLABEL people;	
CREATE CONSTRAINT ON people ASSERT age > 0 AND age < 99;	
	
MERGE (s:people {name: 'David', age: 45});	
	
MATCH (s:people) return s;	
 s	
--	
 people[24.1]{"age": 45, "name": "David"}	
(1 row)	
	
	
MERGE (s:people {name: 'Daniel', age: 100}); 	
ERROR: new row for relation "people" violates check constraint "people_p
roperties_check"	
DETAIL: Failing row contains (24.2, {"age": 100, "name": "Daniel"}).	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

MERGE (s:people {name: 'Emma', age: -1}); 	
ERROR: new row for relation "people" violates check constraint "people_p
roperties_check"	
DETAIL: Failing row contains (24.3, {"age": -1, "name": "Emma"}).	
	
MATCH (s:people) return s;	
 s	
--	
 people[24.1]{"age": 45, "name": "David"}	
(1 row)	

functions

Aggregation functions

Create	the	data	to	be	used	in	the	example.	

CREATE (:person {name: 'Elsa', age: 20});	
CREATE (:person {name: 'Jason', age: 30});	
CREATE (:person {name: 'James', age: 40});	
CREATE (:person {name: 'Daniel', age: 50});	

• avg()	
Returns	the	average	of	numeric	values.	

	 MATCH (v:person)	
RETURN avg(v.age); 	

• collect()	
Returns	a	list	containing	the	values	returned	by	the	expression;	aggregates	data	by	
merging	multiple	records	or	values	into	a	single	list.	

	 MATCH (v:Person)	
RETURN collect(v.age);	

• count()	
Prints	the	number	of	result	rows;	able	to	print	the	number	or	properties	of	vertices	
and	edges	and	can	be	given	an	alias.	

	 MATCH (v:person)	
RETURN count(v); 	
	
MATCH (v:person)-[k:knows]->(p)	
RETURN count(*); 	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

MATCH (v:person)	
RETURN count(v.name) AS CNT;	

• min()/max()	
Takes	the	numeric	attribute	as	input,	returns	the	minimum/maximum	values	to	the	
corresponding	column.	

	 MATCH (v:person)	
RETURN max(v.age);	
	
MATCH (v:person)	
RETURN min(v.age);	

• stDev()	
Returns	the	standard	deviation.	The	stDev	function	returns	the	standard	deviation	of	
the	sample	population	and	must	cast	the	property.	

	 MATCH (v:person)	
RETURN stDev(v.age);	

• stDevP()	
Returns	the	standard	deviation.	The	stDevP	function	returns	the	standard	deviation	of	
the	sample	population	and	must	cast	the	property.	

	 MATCH (v:person)	
RETURN stDevP(v.age);	

• sum()	
Returns	the	sum	of	the	numeric	values.	As	it	is	the	sum	of	the	numeric	values.	The	
property	must	be	cast.	

	 MATCH (v:person)	
RETURN sum(v.age);	

Predicates functions

• all()	
Returns	true	if	all	elements	in	the	list	satisfy	the	condition.	

	 RETURN ALL(x in [] WHERE x = 0);	

• any()	
Returns	true	if	at	least	one	element	in	the	list	satisfies	the	condition.	

	 RETURN ANY(x in [0] WHERE x = 0);	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• none()	
Returns	true	if	no	elements	in	the	list	satisfy	the	condition.	

	 RETURN NONE(x in [] WHERE x = 0);	

• single()	
Returns	true	if	a	single	function	satisfies	only	a	condition	in	the	list.	

	 RETURN SINGLE(x in [] WHERE x = 0);	

Scalar functions

• coalesce()	
Returns	the	first	non-null	value	in	the	list.	

	 CREATE (:person {name: 'Jack', job: 'Teacher'});	
	
MATCH (a)	
WHERE a.name = 'Jack'	
RETURN coalesce(a.age, a.job);	

• endNode()	
Returns	the	last	node	in	the	relationship.	

	 CREATE vlabel Developer;	
CREATE vlabel language;	
CREATE elabel be_good_at;	
CREATE (:Developer {name: 'Jason'})-[:be_good_at]->(:language {name: 'C
'});	
CREATE (:Developer {name: 'David'})-[:be_good_at]->(:language {name: 'JAV
A'});	
	
MATCH (x:Developer)-[r]-()	
RETURN endNode(r);	

• head()	
Returns	the	first	element	in	the	list.	

	 CREATE (:person {name: 'Richard', array: [1, 2, 3]});	
	
MATCH(a)	
where a.name = 'Richard'	
RETURN a.array, head(a.array);	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• id()	
Returns	the	relationship	or	id	of	the	node;	returns	the	node	id	for	all	nodes	specified	in	
the	argument.	

	 MATCH (a)	
RETURN id(a);	

• last()	
Returns	the	last	element	in	the	list.	

	 MATCH (a)	
WHERE a.name = 'Richard'	
RETURN a.array, last(a.array);	

• length()	
Returns	the	length	of	a	string	or	path.	If	you	specify	the	property	of	a	string	or	a	string	
type	as	an	argument,	the	number	of	characters	in	the	string	is	returned.	

	 RETURN length('string');	
	
MATCH (a:person)	
WHERE length(a.name) > 4	
RETURN a.name;	

• properties()	
Converts	the	arguments	to	a	list	of	key/value	mappings.	If	the	argument	is	already	a	
key/value	mapped	list,	it	is	returned	unchanged.	

	 CREATE (p:Person { name: 'Stefan', city: 'Berlin' })	
RETURN properties(p);	

• startNode()	
Returns	the	starting	node	of	the	relationship.	

	 MATCH (x:Developer)-[r]-()	
RETURN startNode(r);	

• toBoolean()	
Converts	a	string	to	a	boolean.	

	 RETURN toBoolean('TRUE'), toBoolean('FALSE');	

• type()	
Returns	the	elabel	of	the	edge	passed	as	an	argument.	If	the	elabel	of	the	edge	also	
inherits	another	elabel,	it	returns	a	parent	elabel	as	well.	You	should	be	careful	when	
passing	arguments	to	the	type	function;	when	you	find	an	edge	that	matches	the	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

pattern	using	MATCH	clause,	assign	a	variable,	and	then	pass	the	variable	as	an	
argument,	the	edge	itself	cannot	be	passed	as	an	argument	to	the	type	function,	but	
must	always	be	passed	as	a	variable.	

	 CREATE elabel loves;	
CREATE (:person {name: 'Adam'})-[:loves]->(:person {name: 'Eve'});	
	
MATCH ({name: 'Adam'})-[r]->({name: 'Eve'})	
RETURN type(r);	

List functions

• keys()	
Returns	a	list	containing	strings	for	all	attribute	names	of	nodes,	relationships,	and	
maps.	

	 MATCH (a)	
WHERE a.name = 'Jack'	
RETURN keys(a);	

• labels()	
Returns	vlabel	of	the	vertex	passed	as	an	argument.	You	should	be	careful	when	
passing	arguments	to	the	label	function;	when	you	find	a	vertex	that	matches	the	
pattern	using	MATCH	clause,	assign	a	variable,	and	pass	that	variable	as	an	argument,	
the	vertex	itself	cannot	be	passed	as	an	argument	to	the	label	function,	but	must	
always	be	passed	as	a	variable.	

	 MATCH (a)	
WHERE a.name='Jack'	
RETURN labels(a);	

• nodes()	
Returns	a	vertex	that	exists	in	the	path	passed	as	an	argument.	You	should	be	careful	
when	passing	arguments	to	the	nodes	function;	when	you	find	a	path	that	matches	the	
pattern	using	MATCH	clause,	assign	a	variable,	and	pass	that	variable	as	an	argument,	
the	path	itself	cannot	be	passed	as	an	argument	to	the	nodes	function,	but	must	always	
be	passed	as	variable.	When	used	with	the	length	function,	the	number	of	vertices	in	
the	path	can	be	found.	

	 MATCH p = (a)-[r]->(b)	
WHERE a.name = 'Adam' and b.name = 'Eve' 	
RETURN nodes(p);	
	
MATCH p = (a)-[r]->(b)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

WHERE a.name = 'Adam' and b.name = 'Eve'	
RETURN length(nodes(p));	

• relationships()	
Returns	the	edges	present	in	the	path	passed	as	an	argument.	You	should	be	careful	
when	passing	arguments	to	the	relationships	function;	when	you	find	a	path	that	
matches	the	pattern	using	MATCH	clause,	assign	a	variable,	and	pass	that	variable	as	
an	argument,	the	path	itself	cannot	be	passed	as	an	argument	to	the	relationships	
function,	but	must	always	be	passed	as	variable.	When	used	with	the	count	function,	
the	number	of	edges	in	the	path	can	be	found.	

	 MATCH p = (a)-[r]->(b)	
WHERE a.name = 'Adam' and b.name = 'Eve'	
RETURN relationships(p);	
	
MATCH p = (a)-[r]->(b)	
WHERE a.name = 'Adam' and b.name = 'Eve'	
RETURN count(relationships(p));	

• tail()	
Returns	a	list	result	that	contains	all	elements	except	the	first	element	in	the	list.	

	 MATCH (a)	
WHERE a.name = 'Richard'	
RETURN a.array, tail(a.array);	

Mathematics functions

Number

• abs()	
Returns	a	numeric	value	passed	as	an	argument.	It	may	be	passed	as	a	decimal	number	
or	as	a	subtraction.	The	MATCH	clause	can	be	used	to	find	a	specific	element	and	pass	
a	subtraction	of	the	properties,	which	are	numeric	values,	among	the	properties	of	the	
elements.	

	 RETURN abs(-3.14);	
	
RETURN abs(20-45);	
	
MATCH (a {name:'Jack'}), (b {name:'Emily'})	
RETURN abs(a.age-b.age);	

• ceil(),	floor(),	round()	
The	ceil	function	rounds	the	numeric	value	passed	as	an	argument	to	the	first	decimal	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

place.	The	floor	function	returns	the	numeric	value	passed	as	an	argument	to	the	first	
decimal	place.	The	round	function	rounds	the	numeric	value	passed	as	the	argument	
to	the	first	decimal	place.	

	 RETURN ceil(3.1); 	
RETURN ceil(1); 	
RETURN ceil(-12.19);	
	
RETURN floor(3.1);	
RETURN floor(1);	
RETURN floor(-12.19);	
	
RETURN round(3.1);	
RETURN round(3.6);	
RETURN round(-12.19);	
RETURN round(-12.79);	

• rand()	
Returns	an	arbitrary	floating-point	number	between	0	and	1.	

	 RETURN rand();	

• sign()	
Returns	the	sign	of	the	numeric	value	passed	as	an	argument;	returns	'1'	if	the	
argument	passed	is	positive,	'-1'	if	negative,	and	'0'	if	zero.	

	 RETURN sign(25);	
RETURN sign(-19.93);	
RETURN sign(0);	

Logarithmic

• log()	
Returns	the	natural	logarithm	of	a	number.	

	 RETURN log(27);	

	 The	natural	logarithm	of	27	is	returned.	

• log10()	
Returns	the	common	logarithm	(base	10)	of	a	number.	

	 RETURN log10(27);	

	 The	common	logarithm	of	27	is	returned.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• exp()	
The	exp	function	returns	a	power	value	to	base	(e)	exponentiated	by	the	numeric	
value	passed	as	an	argument.	That	is,	exp(1)	returns	e^1≒2.71828182845905,	exp(2)	
returns	e^2≒7.38905609893065,	and	exp(-1),	e^-1≒0.367879441171442.	

	 RETURN exp(1);	
RETURN exp(2);	
RETURN exp(-1);	

• sqrt()	
Returns	the	square	root	of	the	numeric	value	passed	as	an	argument.	The	sqrt	function	
cannot	pass	a	negative	number	as	an	argument.	

	 RETURN sqrt(25);	

Trigonometric

• sin()/cos()/tan()	
The	sin,	cos,	and	tan	functions	return	the	sine,	cosine,	and	tangent	values	of	the	
numeric	values	passed	as	arguments,	respectively.	sin(),	cos(),	and	tan()	print	the	
values	in	radians;	sind(),	cosd(),	and	tand()	are	used	to	print	the	values	in	degrees.	

	 RETURN sin(0.5);	
RETURN sin(-1.5);	
	
RETURN cos(0);	
RETURN cos(-1);	
	
RETURN tan(0);	
RETURN tan(15.2);	

• cot()/asin()/acos()/atan()/atan2()	
The	cot	function	returns	a	cotangent	value	(inverse	of	tangent)	of	the	numeric	value	
passed	as	an	argument,	the	asin	function	returns	an	arcsine	value	(inverse	of	sine)	of	
the	numeric	value	passed	as	the	argument,	and	the	acos	function	returns	an	arccosine	
value	of	the	numeric	value	(inverse	of	cosine).	The	atan,	atan2	functions	return	the	
arctangent	value	(inverse	of	tangent)	of	the	numeric	value	passed	as	an	argument.	The	
argument	range	of	the	acos	function	is	a	numeric	value	between	-1	and	1.	atan2	has	
two	arguments	in	order	to	make	the	atan	function	more	granular.	Conceptually,	
atan2(a,	b)	is	equivalent	to	atan	(a/b).	However,	it	is	not	clear	whether	atan(-5)	is	
atan(-15/3)	or	atan	(15/(-3)).	The	trigonometric	function	requires	a	definite	
distinction	because	the	argument	is	a	radian	value.	Therefore,	using	atan2	rather	than	
atan	makes	it	more	accurate.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 RETURN cot(1.5);	
	
RETURN asin(1);	
	
RETURN acos(0.5);	
	
RETURN atan(-1);	
	
RETURN atan2(-1.5, 1.3);	

• pi()/degrees()/radians()	
The	pi	function	returns	pi	as	a	number.	The	degrees	function	takes	the	arguments	
passed	as	radians	and	returns	them	to	degrees.	The	radians	function	converts	the	
arguments	passed	to	degrees	into	radians.	

	 RETURN pi();	
	
RETURN degrees(12.3);	
RETURN degrees(pi());	
	
RETURN radians(180);	

String functions

• replace()	
If	the	second	argument	is	contained	in	the	first	argument,	replace	the	second	
argument	with	the	third	argument.	

	 RETURN replace('ABCDEFG', 'C', 'Z');	
RETURN replace('ABCDEFG', 'CD', 'Z');	
RETURN replace('ABCDEFG', 'C', 'ZX');	
RETURN replace('ABCDEFG', 'CD', 'ZXY');	

• substring()	
Prints	the	first	argument	from	the	nth	digit	(n	is	the	number	indicated	by	the	second	
argument).	The	third	argument	indicates	how	many	characters	to	be	printed.	If	there	
is	no	third	argument	and	it	is	greater	than	the	number	of	characters	in	the	first	
argument,	it	prints	to	the	end.	

	 RETURN substring('ABCDEFG', 2);	
RETURN substring('ABCDEFG', 2, 3);	
RETURN substring('ABCDEFG', 4, 10);	

• left()/right()	
The	left	function	prints	the	first	argument	from	the	left,	and	the	right	function	prints	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

characters	up	to	length	of	n	(n	is	the	number	indicated	by	in	the	second	argument)	
from	the	right.	If	the	value	of	the	second	argument	is	larger	than	the	number	of	
characters	remaining,	the	number	of	characters	remaining	will	be	printed	out.	

	 RETURN left('AAABBB', 3);	
RETURN right('AAABBB', 3);	

• lTrim()/rTrim()	
The	lTrim	function	removes	all	left	whitespace	from	the	passed	argument,	and	the	
rTrim	function	removes	all	right	whitespace	before	printing.	

	 RETURN lTrim(' ABCD ');	
RETURN rTrim(' ABCD ');	

• toLower()/toUpper()	
The	toLower	function	converts	all	passed	arguments	to	lower	case	and	the	toUpper	
function	converts	them	to	upper	case.	

	 RETURN toLower('AbCdeFG');	
RETURN toUpper('AbCdeFG');	

• reverse()	
Prints	the	arguments	in	reverse	order.	

	 RETURN reverse('ABCDEFG');	

• toString()	
Converts	an	integer,	floating,	or	boolean	value	to	a	string.	

	 RETURN toString(11.5), toString('already a string'), toString(TRUE);	

• trim()	
Returns	the	original	string	with	the	leading	and	trailing	spaces	removed.	

	 RETURN trim(' hello ');	

	

SQL Language

Introduction
AgensGraph	supports	SQL	for	relational	data	queries.	It	supports	DDL	(create,	alter,	drop,	
etc.)	for	creating,	modifying,	and	deleting	objects	such	as	table,	column,	constraints,	and	
schema	and	DML	(insert,	update,	delete,	etc.)	for	inserting,	modifying	and	deleting	data.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

SQL	Syntax	is	identical	with	PostgreSQL's	SQL	Syntax.	See	PostgreSQL-The	SQL	Language	
for	more	information.	

Data Type
AgensGraph	provides	diverse	data	types.	You	can	add	new	types	as	well	using	CREATE	
TYPE	command.	Refer	to	the	User-defined	Type	clause	for	more	information	on	CREATE	
TYPE.	

The	following	table	lists	the	generic	data	types	provided	by	default,	and	some	of	the	types	
that	are	used	internally	or	not	used	may	not	be	included.	("Alias"	is	an	internally-used	
name.)	

Name	 Alias	 Description	

bigint	 int8	 Signed	8-byte	integer	

bigserial	 	 Auto-incrementing	8-byte	integer	

bit	[(n)]	 16-bit	integer	 Fixed	length	bit	string	

bit	varying	[(n)]	 varbit	 Variable-length	bit	string	

boolean	 bool	 Logical	Boolean	(true	/	false)	

box	 	 Square	box	on	a	plane	

bytea	 	 Binary	data	("byte	array")	

character	[(n)]	 char	[(n)]	 Fixed-length	character	string	

character	varying	[(n)]	 varchar	[(n)]	 Variable-length	character	string	

cidr	 	 IPv4	or	IPv6	network	address	

circle	 	 Circle	on	a	plane	

date	 	 Calendar	date	(year,	month,	day)	

https://www.postgresql.org/docs/current/sql.html

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

double	precision	 float8	 Double-precision	floating-point	number	
(8	bytes)	

inet	 	 IPv4	or	IPv6	host	address	

integer	 int,	int4	 Signed	4-byte	integer	

interval	[fields]	[(p)]	 	 Time	range	

json	 	 Text	JSON	data	

jsonb	 	 Binary	JSON	data,	disjointed	

line	 	 Infinite	straight	line	on	a	plane	

lseg	 	 Segment	on	a	plane	

macaddr	 	 Media	Access	Control	(MAC)	address	

money	 	 Traffic	volume	

numeric	[(p,	s)]	 decimal	[(p,	
s)]	

The	exact	number	of	selectable	digits	

path	 	 Geometric	path	in	the	plane	

pg_lsn	 	 AgensGraph	log	sequence	number	

point	 	 Geometric	points	on	a	plane	

polygon	 	 Geometrically-closed	path	in	plane	

real	 float4	 Single-precision	floating-point	number	
(4	bytes)	

smallint	 int2	 Signed	two-byte	integer	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

smallserial	 serial2	 Auto-incrementing	2-byte	integer	

serial	 serial4	 Auto-incrementing	4-byte	integer	

text	 	 Variable-length	character	string	

time	[(p)]	[without	time	
zone]	

	 Time	(no	time	zone)	

time	[(p)]	with	time	zone	 timetz	 Includes	time	and	time	zone	

timestamp	[(p)]	[without	time	
zone]	

	 Date	and	time	(no	timezone)	

timestamp	[(p)]	with	time	
zone	

timestamptz	 Date	and	time,	including	time	zone	

tsquery	 	 Text	search	query	

tsvector	 	 Text	Search	Document	

txid_snapshot	 	 User-level	transaction	ID	snapshot	

uuid	 	 Universal	unique	identifier	

xml	 	 XML	data	

Numeric Types

A	numeric	type	consists	of	a	2/4/8	byte	integer,	a	4/8	byte	floating	point	numbers,	and	a	
selectable	total	number	of	digits.	

The	following	numeric	types	are	available:	

Name	
Storage	
Size	 Description	 Range	

smallint	 2	bytes	 A	small	range	of	 -32768	to	+32767	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

integers	

integer	 4	bytes	 Common	integer	 -2147483648	to	+2147483647	

bigint	 8	bytes	 A	large	range	of	
integers	

-9223372036854775808	to	
+9223372036854775807	

decimal	 variable	 Custom	precision,	
correct	

Up	to	131072	digits	before	the	
decimal	point,	
up	to	16383	digits	after	the	decimal	
point	

numeric	 variable	 Custom	precision,	
correct	

Up	to	131072	digits	before	the	
decimal	point,	
up	to	16383	digits	after	the	decimal	
point	

real	 4	bytes	 Variable	precision,	
incorrect	

6	digits	precision	

double	
precision	

8	bytes	 Variable	precision,	
incorrect	

15	digits	precision	

smallserial	 2	bytes	 Automatic	incremental	
constant	(small)	

1	to	32767	

serial	 4	bytes	 Automatic	incremental	
constant	

1	to	2147483647	

bigserial	 8	bytes	 Automatic	incremental	
integer	(large)	

1	to	9223372036854775807	

Integer Types

smallint,	integer,	and	bigint	types	store	a	wide	range	of	integers	without	decimal	fractions.	
If	you	try	to	store	a	value	beyond	the	allowable	range,	an	error	will	occur.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• integer	type:	This	type	is	generally	chosen	as	it	provides	the	best	balance	point	of	
range,	storage	size,	and	performance.	
	

• smallint	type:	Typically	used	only	when	there	is	insufficient	disk	space.	
• bigint	type:	To	be	used	when	the	integer	type	range	is	insufficient.	

SQL	specifies	only	integer	(or	int),	smallint,	and	bigint.	(available	as	int2,	int4,	and	int8	as	
well).	

Arbitrary Precision Numbers

Numeric	types	may	store	a	very	large	number	of	digits	and	perform	calculations	correctly.	
It	is	especially	recommended	when	storing	amounts	and	quantities	that	should	be	accurate.	
Arithmetic	of	numeric	values,	however,	is	much	slower	than	the	integer	types	or	floating-
point	types	described	in	the	next	section.	

Scale	in	the	numeric	type	means	the	number	of	digits	to	the	right	of	the	decimal	point.	
Precision	means	the	total	number	of	significant	digits	of	the	total	number.	That	is,	the	total	
number	of	digits	on	both	sides	of	the	decimal	point.	Thus,	precision	and	scale	of	the	
number	23.5141	is	6	and	4,	respectively.	The	scale	of	whole	number	can	be	considered	0	
(Scale	0).	

You	may	configure	both	the	maximum	precision	and	the	maximum	scale	of	a	numeric	
column.	

To	declare	a	column	of	numeric	type,	use	the	following	syntax:	

NUMERIC(precision, scale)	

Precision	must	be	positive	and	scale	must	be	zero	or	positive.	

NUMERIC(precision)	

If	you	specify	numeric	without	precision	or	scale	as	follows,	it	selects	Scale	0.	

NUMERIC	

If	you	create	a	numeric	column	that	can	store	precision	and	scale	values	without	specifying	
them,	you	may	store	the	precision	value.	This	kind	of	column	can	be	used	without	
restriction	if	it	does	not	specify	a	specific	scale.	However,	a	numeric	column	with	a	scale	
value	specified	will	be	limited	by	the	scale	value.	(When	transferring	data,	make	sure	to	
specify	the	precision	and	scale	always).	

Note: The maximum allowable precision is 1000 if explicitly specified in the type declaration. NUMERICs that do
not specify precision are limited to the ranges described in the table.

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

In	the	case	where	the	scale	in	the	value	to	be	stored	is	greater	than	the	scale	declared	in	the	
column,	the	system	rounds	off	the	value	to	the	specified	scale;	after	rounding-off,	if	the	
number	of	digits	to	the	right	of	the	decimal	point	exceeds	"the	declared	scale	subtracted	
from	the	declared	precision,"	an	error	will	occur.	Numeric	values	are	physically	stored	
without	extra	0	values.	Therefore,	the	precision	and	scale	of	the	declared	column	is	the	
maximum	(not	a	fixed	allocation).	In	this	sense,	numeric	types	are	closer	to	varchar	(n)	
than	to	char	(n).	The	actual	storage	requirement	is	2	bytes	for	each	4-digit	group	plus	3	for	
8-byte	overhead.	

The	decimal	and	numeric	types	are	the	same	and	both	are	SQL	standards.	

Floating-Point Types

The	real	and	double	precision	data	types	are	inaccurate	variable-precision	numeric	types.	
Inaccuracy	means	that	some	values	cannot	be	accurately	converted	to	their	internal	form	
and	are	stored	as	approximate	values,	making	the	storage	and	retrieval	of	values	somewhat	
inconsistent.	

• If	you	need	accurate	storage	and	computation	(e.g.	amount),	use	the	numeric	type	
instead.	
	

• If	you	need	to	perform	complex	calculations	using	this	type	for	some	unavoidable	
reason	(e.g.	when	you	need	a	specific	behavior	in	boundary	cases	(infinity,	
underflow)),	you	should	be	careful	with	the	implementation.	
	

• Comparing	two	floating-point	values	to	see	if	they	are	equal	may	not	always	work	as	
expected.	

On	most	platforms,	the	real	type	has	a	minimum	range	of	1E-37	to	1E+37,	with	precision	of	
at	least	6.	The	double	precision	type	generally	has	precision	of	at	least	15,	ranging	from	1E-
307	to	1E+308.	Too	large	or	too	small	values	will	generate	an	error.	If	precision	of	the	
entered	number	is	too	large,	it	may	be	rounded	up.	An	underflow	error	occurs	if	the	
number	is	so	close	to	zero	that	it	cannot	be	marked	as	non-zero.	

Serial Types

The	smallserial,	serial,	and	bigserial	data	types	are	not	actual	types,	but	are	international	
notations	for	creating	unique	identifier	columns	(similar	to	the	AUTO_INCREMENT	
attribute	supported	by	some	other	databases).	

The	following	two	statements	work	in	the	same	manner:	

-- SERIAL	
CREATE TABLE tablename (

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

colname SERIAL	
);	
	
-- SEQUENCE	
CREATE SEQUENCE tablename_colname_seq;	
	
CREATE TABLE tablename (
colname integer NOT NULL DEFAULT nextval ('tablename_colname_seq')	
);	
	
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;	

Create	an	integer	column	and	sort	it	by	default	assigned	in	the	sequence.	A	NOT	NULL	
constraint	is	applied	to	prevent	null	values	from	being	inserted.	(In	most	cases,	it	is	
possible	to	prevent	duplicate	values	from	being	accidentally	entered	with	a	UNIQUE	or	
PRIMARY	KEY	constraint;	such	a	constraint	is	not	automatically	generated.)	

Finally,	the	sequence	is	marked	as	column	"owned	by,"	so	that	it	is	not	deleted	unless	the	
column	or	table	is	deleted.	

The	serial	column	default	is	specified	in	order	to	insert	the	next	value	of	sequence	into	the	
serial	column.	This	can	be	done	by	excluding	columns	from	the	column	list	of	the	INSERT	
statement	or	by	using	the	DEFAULT	keyword.	

• The	serial	type	is	the	same	as	serial4;	both	generate	an	integer	column.	
	

• The	bigserial	and	serial8	types	work	the	same	except	when	creating	a	bigint	column.	
bigserial	should	be	used	if	you	expect	to	use	more	than	231	identifiers	throughout	the	
lifetime	of	the	table.	
	

• The	smallserial	and	serial2	types	operate	the	same	except	when	creating	a	smallint	
column.	

The	sequence	created	for	the	serial	column	is	automatically	deleted	when	the	owning	
column	is	deleted.	You	can	delete	the	sequence	without	deleting	the	column,	but	the	
column	base	expression	is	forcibly	deleted.	

Character Types

The	following	character	types	are	available:	

Name	 Description	

character	varying(n),	varchar(n)	 Variable	with	limit	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

character(n),	char(n)	 Fixed	length,	fill	in	blank	

text	 Unlimited	variable	length	

The	two	basic	character	types	define	character	variation(n)	and	character(n).	The	value	of	
n	is	a	positive	integer,	and	both	can	store	up	to	n	length	characters	(not	bytes).	

If	you	store	a	string	that	is	longer	than	n,	an	error	occurs	if	the	excess	string	is	not	empty;	if	
it	is	blank,	it	is	truncated	to	the	length	of	the	specified	n	value.	If	you	store	a	string	that	is	
shorter	than	n	characters,	it	is	filled	with	blanks	for	the	character	type.	For	character	
varying,	the	string	except	blanks	is	stored.	

Trailing	blanks	in	character	types	are	treated	as	not	syntactically	significant	and	are	
ignored	when	comparing	two	values	of	the	character	type.	Trailing	blanks	are	syntactically	
significant	when	using	pattern-matching	regular	expressions	such	as	character	varying,	
text,	and	LIKE.	

char(n)	and	varchar(n)	are	aliases	of	character	variation(n)	and	character(n).	A	character	
without	a	specifier	is	equivalent	to	a	character(1),	and	a	character	varying	without	a	
specifier	stores	strings	regardless	of	its	size.	It	also	provides	a	text	type	for	storing	strings,	
regardless	of	length.	

An	example	of	using	the	character	type	is	shown	below:	

create table test1 (a character (4));	
CREATE TABLE	
insert into test1 values ('ok');	
INSERT 0 1	
select a, char_length(a) from test1;	
 a | char_length 	
------+-------------	
 ok | 2	
 	
create table test2 (b varchar(5));	
CREATE TABLE	
insert into test2 values ('ok');	
INSERT 0 1	
insert into test2 values ('good ');	
INSERT 0 1	
insert into test2 values ('too long');	
Error: character varying(5) tries to store data that is too long for the data
 type. 	
insert into test2 values ('too long'::varchar(5));	
INSERT 0 1	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

select b, char_length(b) from test2;	
 b | char_length 	
-------+-------------	
 ok | 2	
 good | 5	
 too l | 5	

Date/Time Types

The	following	date/time	types	are	available:	

Name	
Storage	
Size	 Description	 Low	Value	 High	Value	 Resolution	

timestamp	
[(p)]	
[without	time	
zone]	

8	bytes	 Both	date	and	
time	(no	
timezone)	

4713	BC	 294276	AD	 1	microsecond	
/	14	digits	

timestamp	
[(p)]	with	
time	zone	

8	bytes	 Both	date	and	
time,	including	
timezone	

4713	BC	 294276	AD	 1	microsecond	
/	14	digits	

date	 4	bytes	 Date	(no	time)	 4713	BC	 5874897	
AD	

1	day	

time	[(p)]	
[without	time	
zone]	

8	bytes	 Time	(no	date)	 00:00:00	 24:00:00	 1	microsecond	
/	14	digits	

time	[(p)]	
with	time	zone	

12	bytes	 Include	time	of	
day,	time	zone	

00:00:00	
+1459	

24:00:00-
1459	

1	microsecond	
/	14	digits	

interval	
[fields]	[(p)]	

16	bytes	 Time	interval	 -178000000	
years	

178000000	
years	

1	microsecond	
/	14	digits	

Note: The SQL standard uses timestamp and timestamp without time zone equally, and timestamptz is the
abbreviation for timestamp with time zone.

time,	timestamp,	and	interval	may	set	the	scale	(the	number	of	digits	of	the	decimal	
fraction)	on	the	second	field	as	the	p	value,	and	there	is	no	explicit	restriction	on	precision	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

(total	number	of	digits)	by	default.	The	allowable	range	of	p	is	0	to	6	for	timestamp	and	
interval	type.	

For	the	time	type,	the	allowable	range	of	p	is	0	to	6	when	using	8-byte	integer	storage,	and	
0	to	10	when	using	floating-point	storage.	

The	interval	type	has	an	additional	option	of	limiting	the	set	of	stored	fields	by	writing	one	
of	the	following	statements:	

YEAR	
MONTH	
DAY	
HOUR	
MINUTE	
SECOND	
YEAR TO MONTH	
DAY TO HOUR	
DAY TO MINUTE	
DAY TO SECOND	
HOUR TO MINUTE	
HOUR TO SECOND	
MINUTE TO SECOND	

Date/Time Input

The	date	and	time	input	can	be	specified	in	the	order	of	day,	month,	and	year	as	follows:	

set datestyle to sql, mdy;	
set datestyle to sql, dmy;	
set datestyle to sql, ymd;	

Set	the	DateStyle	parameter	to	MDY	to	select	the	month-day-year	interpretation,	DMY	to	
select	the	day-month-year	interpretation,	or	YMD	to	select	the	year-month-day	
interpretation.	

The	date	or	time	input	must	be	preceded	and	followed	by	single	quotation	marks,	like	a	
text	string.	

• Date	
Available	date	types:	

Example	 Description	

1999-01-08	 ISO	8601.	January	8	in	random	mode	(recommended	format)	

January	8,	1999	 Ambiguous	in	datestyle	input	mode	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

1/8/1999	 January	8	in	MDY	mode.	August	1	in	DMY	mode	

1/18/1999	 January	18	in	MDY	mode.	Rejected	in	other	modes	

01/02/03	 January	2,	2003	in	MDY	mode	
February	1,	2003	in	DMY	mode	
February	3,	2001	in	YMD	mode	

1999-Jan-08	 January	8	in	random	mode	

Jan-08-1999	 January	8	in	random	mode	

08-Jan-1999	 January	8	in	random	mode	

99-Jan-08	 January	8	in	YMD	mode;	others	are	errors	

08-Jan-99	 January	8,	except	error	in	YMD	mode	

Jan-08-99	 January	8,	except	error	in	YMD	mode	

19990108	 ISO	8601.	January	8,	1999	in	random	mode	

990108	 ISO	8601.	January	8,	1999	in	random	mode	

1999.008	 Year	and	day	of	the	year	

J2451187	 Julian	date	

January	8,	99	BC	 Year	99	BC	

• Time	
The	visual	type	is	time	[(p)]	without	time	zone	and	time	[(p)]	with	time	zone.	time	
alone	is	the	same	as	time	without	time	zone.	A	valid	entry	of	this	type	consists	of	time,	
followed	by	an	optional	time	zone.	(See	the	table	below.)	If	the	time	zone	is	specified	
as	an	input	for	time	without	time	zone,	it	is	ignored.	You	can	specify	the	date,	but	
ignore	it	except	when	using	the	time	zone	name	associated	with	daylight	saving	time,	
such	as	America/New_York.	In	this	case,	a	date	specification	is	required	to	determine	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

whether	the	standard	time	or	daylight	saving	time	period	is	applied.	The	appropriate	
time	zone	offset	is	recorded	in	the	time	with	time	zone	value.	

	 Table	-	[Enter	Time]	

	 Example	 	 Description	

	 04:05:06.789	 	 ISO	8601	

	 04:05:06	 	 ISO	8601	

	 04:05	 	 ISO	8601	

	 040506	 	 ISO	8601	

	 04:05	AM	 	 Same	as	04:05.	AM	does	not	affect	the	
value.	

	 04:05	PM	 	 Same	as	16:05.	Input	must	be	<=	12.	

	 04:05:06.789-8	 	 ISO	8601	

	 04:05:06-08:00	 	 ISO	8601	

	 04:05-08:00	 	 ISO	8601	

	 040506-08	 	 ISO	8601	

	 04:05:06	PST	 	 Time	zone	specified	by	abbreviation	

	 2003-04-12	04:05:06	
America/New_York	

	 Time	zone	specified	by	full	name	

	 Table	-	[En	ter	Time	Slot]	

	 Example	 	 Description	

	 PST	 	 Abbreviation	(for	Pacific	Time)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 America/New_York	 	 All	time	zone	names	

	 PST8PDT	 	 POSIX	style	time	zone	specification	

	 -8:00	 	 ISO-8601	Offset	for	PST	

	 -800	 	 ISO-8601	Offset	for	PST	

	 -8	 	 ISO-8601	Offset	for	PST	

	 zulu	 	 Military	acronym	for	UTC	

	 See	the	Time	Zones	section	below	for	how	to	specify	the	time	zone.	

• Time	stamp	
The	valid	input	of	timestamp	type	consists	of	a	connection	of	date	and	time	followed	
by	an	optional	time	zone	and	optional	AD	or	BC.	(AD/BC	may	appear	before	the	time	
zone,	which	is	not	the	preferred	order.)	

	 1999-01-08 04:05:06	
1999-01-08 04:05:06 -8:00	

	 These	are	valid	values	in	accordance	with	the	ISO	8601	standard.	The	following	
command	format	is	also	supported:	

	 January 8 04:05:06 1999 PST	

	 The	SQL	standard	distinguishes	timestamp	without	time	zone	and	timestamp	with	
time	zone	literals	by	the	presence	of	a	"+"	or	"-"	sign	and	the	time	zone	offset	after	that	
time.	

	 -- timestamp without time zone	
 TIMESTAMP '2004-10-19 10:23:54'	
	
 -- timestamp with time zone	
 TIMESTAMP '2004-10-19 10:23:54+02'	

	 If	you	do	not	specify	timestamp	with	time	zone,	it	is	treated	as	timestamp	without	time	
zone;	thus,	if	you	use	timestamp	with	time	zone,	you	must	specify	an	explicit	type.	

	 TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02'	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• Special	values	
Some	special	date/time	input	values	are	supported	for	convenience	as	shown	in	the	
table.	The	values	infinity	and	-infinity	are	simple	abbreviations	that	are	specially	
represented	within	the	system,	without	modification,	but	otherwise	converted	to	the	
default	date/time	value	when	read.	(Note	the	now	and	related	strings	are	converted	to	
specific	time	values	at	the	moment	they	are	read.)	If	you	use	all	of	these	values	as	
constants	in	your	SQL	command,	you	must	use	single	quotation	marks	around	the	
constants.	

	 Input	
String	 	 Valid	Type	 	 Description	

	 epoch	 	 date,	timestamp	 	 1970-01-01	00:	00:	00	+	00	(Unix	system	
time	0)	

	 infinity	 	 date,	timestamp	 	 After	all	other	timestamps	

	 -infinity	 	 date,	timestamp	 	 Before	all	other	timestamps	

	 now	 	 date,	time,	
timestamp	

	 Start	time	of	current	transaction	

	 today	 	 date,	timestamp	 	 Midnight	today	

	 tomorrow	 	 date,	timestamp	 	 Tomorrow	midnight	

	 yesterday	 	 date,	timestamp	 	 Yesterday	midnight	

	 allballs	 	 time	 	 00:00:00.00	UTC	

	 You	can	also	use	the	following	SQL-compatible	functions	to	get	the	current	time	values	
of	the	data	types	such	as	CURRENT_DATE,	CURRENT_TIME,	CURRENT_TIMESTAMP,	
LOCALTIME,	and	LOCALTIMESTAMP.	

Date/Time Output

The	output	format	of	the	date/time	type	can	be	set	to	one	of	four	styles:	ISO	8601,	SQL	
(Ingres),	typical	POSTGRES	(Unix	date	format)	or	German.	The	default	is	ISO	format.	

The	following	table	shows	an	example	of	each	output	style.	The	output	of	date/time	type	
has	usually	only	the	date	or	time	depending	on	the	example	given.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Style	Specification	 Description	 Example	

ISO	 ISO	8601,	SQL	standard	 1997-12-17	07:37:16-08	

SQL	 Traditional	style	 12/17/1997	07:37:16.00	PST	

Postgres	 Original	style	 Wed	Dec	17	07:37:16	1997	PST	

German	 Local	style	 |	17.12.1997	07:37:16.00	PST	

If	the	DMY	field	order	is	specified,	it	is	output	in	order	of	month,	day.	In	other	cases,	it	is	
output	in	order	of	day	and	month.	The	following	table	is	an	example:	

datestyle	Setting	 Input	Ordering	 Example	Output	

SQL,	DMY	 day/month/year	 17/12/1997	15:37:16.00	CET	

SQL,	MDY	 month/day/year	 12/17/1997	07:37:16.00	PST	

Postgres,	DMY	 day/month/year	 Wed	17	Dec	07:37:16	1997	PST	

The	date/time	style	can	be	selected	by	the	user	using	SET	datestyle	command,	DateStyle	
parameter	in	the	postgresql.conf	configuration	file,	or	PGDATESTYLE	environment	
variables	of	the	server	or	client.	The	formatting	function	to_char	allows	you	to	specify	
date/time	output	formats	in	a	more	flexible	manner.	

Time Zones

Time	zones	and	notations	are	affected	by	political	decisions	in	addition	to	topographical	
features.	Worldwide	time	zones	have	been	standardized	in	the	1900s	but	are	constantly	
changing	due	to	daylight	time	regulations.	AgensGraph	uses	the	IANA	(Olson)	timezone	
database.	For	future	times,	it	considers	that	the	latest	known	rules	for	a	specified	time	zone	
will	be	complied	with	indefinitely	in	the	distant	future.	However,	it	has	a	peculiar	mix	of	
dates,	time	types	and	features.	

Two	obvious	problems	are:	

• Date	type	does	not	have	an	associated	time	zone	(only	time	type	has).	In	the	real	world,	
the	time	zone	has	no	meaning	unless	it	is	associated	with	date	and	time,	since	the	
offset	can	vary	over	the	year	containing	the	daylight	saving	time	boundary.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• The	default	time	zone	is	specified	as	a	constant	numeric	offset	from	UTC.	Thus,	it	may	
not	be	possible	to	adapt	to	daylight	saving	time	when	performing	date/time	
calculations	across	DST	boundaries.	

When	using	time	zone	to	solve	this	problem,	we	recommend	using	date/time	type	that	
includes	both	date	and	time	(this	is	supported	for	compatibility	but	we	do	not	recommend	
using	the	time	with	time	zone	type).	Assume	a	local	time	zone	for	types	that	only	contain	
dates	or	times.	The	date	and	time	in	the	time	zone	are	internally	stored	in	UTC.	Then,	they	
are	converted	to	a	local	time	in	the	Time	Zone	specified	by	the	TimeZone	configuration	
parameters	before	being	displayed	to	the	client.	Allow	the	time	zone	to	be	specified	in	three	
different	formats.	

• The	full	names	of	time	zone	(e.g.	America/New_York).	The	recognized	time	zone	
names	are	listed	in	the				
pg_timezone_names	view.	(Identical	time	zone	names	are	recognized	by	many	other	
software	applications	as	well.)	
	

• Time	zone	abbreviations	(e.g.	PST).	In	contrast	to	the	full	names	of	time	zone	that	can	
imply	the	daylight	time	conversion	date	rule	set,	the	corresponding	specification	
simply	defines	a	specific	offset	from	UTC.	The	recognized	abbreviations	are	listed	in	
the	pg_timezone_abbrevs	view.	You	cannot	set	the	configuration	parameters	TimeZone	
or	log_timezone	as	a	time	zone	abbreviation,	but	may	use	an	abbreviation	and	AT	
TIME	ZONE	operator	as	date/time	input	values.	

• In	addition	to	time	zone	names	and	abbreviations,	it	accepts	POSIX	style	time	zone	
specifications	of	STDoffset	or	STDoffsetDST;	STD	is	a	regional	abbreviation,	offsetUTC	
is	the	numerical	offset	for	time	of	the	west,	and	DST	is	the	optional	summertime	local	
abbreviation	that	is	assumed	to	be	one	hour	earlier	than	the	specified	offset.	For	
instance,	if	EST5EDT	is	not	yet	a	recognized	local	name,	it	is	accepted	and	becomes	
functionally	identical	to	the	US	East	Coast	time.	In	this	syntax,	local	abbreviations	can	
be	any	string	of	characters	or	any	string	using	angle	brackets	(<>).	If	a	daylight	saving	
area	abbreviation	is	present,	it	is	assumed	to	be	used	in	accordance	with	the	same	
daylight	saving	time	conversion	rules	as	those	used	in	the	posixrules	entry	in	the	IANA	
time	zone	database.	As	posixrules	are	identical	with	US/Eastern	in	a	standard	
AgensGraph	installation,	the	POSIX	style	time	zone	specification	complies	with	the	USA	
Daylight	Saving	Time	rules.	You	can	adjust	this	behavior	by	replacing	the	posixrules	
file,	if	necessary.	

Simply	put,	this	is	the	difference	between	abbreviations	and	full	names.	Time	zone	
abbreviations	represent	a	specific	offset	from	UTC,	while	many	of	time	zone	full	names	
imply	a	local	daylight	time	rule	and	have	two	possible	UTC	offsets.	For	instance,	"2014-06-
04	12:00	America/New_York"	representing	the	noon	in	the	New	York	area	was	Eastern	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Daylight	Time	(UTC-4)	for	the	day.	Accordingly,	"2014-06-04	12:00	EDT"	specifies	the	
same	time	instance.	However,	"2014-06-04	12:00	EST"	specifies	noon	Eastern	Standard	
Time	(UTC-5)	regardless	of	whether	daylight	saving	time	is	nominally	in	effect	on	that	date.	

To	complicate	the	problem,	some	areas	use	the	same	time	zone	abbreviations	meaning	
different	UTC	offsets	at	different	times.	For	example,	MSK	in	Moscow	meant	UTC+3	for	
several	years,	and	UTC+4	for	other	cases.	Even	if	these	abbreviations	are	interpreted	
according	to	their	meanings	for	a	given	date	(or	most	recent	meaning),	as	in	the	above	EST	
example,	this	does	not	necessarily	match	the	local	time	of	the	date.	Note	that	the	POSIX	
style	time	zone	function	does	not	check	for	the	correctness	of	local	abbreviations;	this	
means	you	may	silently	accept	false	input.	For	example,	SET	TIMEZONE	TO	FOOBAR0	
works	by	letting	the	system	use	specific	abbreviations	for	UTC.	Another	problem	to	keep	in	
mind	is	that	positive	offset	is	used	for	the	Greenwich's	position	west	in	the	POSIX	time	zone	
region	name.	Elsewhere,	AgensGraph	conforms	to	the	ISO-8601	notation,	where	the	
positive	time-zone	offset	is	east	of	Greenwich.	Time	zone	names	and	abbreviations	are	case	
sensitive	and	are	not	embedded	in	the	server;	they	are	to	be	searched	from	the	
configuration	files	stored	in	the	installation	directory	
(.../share/timezone/and	.../share/timezonesets/).	TimeZone	configuration	parameters	can	
be	set	in	other	standard	ways,	which	is	different	from	postgresql.conf	as	follows:	

• The	SQL	command	SET	TIME	ZONE	sets	a	time	zone	for	the	session.	You	can	use	SET	
TIMEZONE	TO,	which	is	more	compatible	with	the	SQL	specification.	
	

• The	PGTZ	environment	variable	is	used	by	the	libpq	client	to	send	SET	TIME	ZONE	
command	to	the	server	when	connected.	

Interval Input

The	interval	value	can	be	written	using	the	following	detailed	syntax:	

[@] quantity unit [quantity unit...] [direction]	

Where	quantity	is	a	number	and	unit	can	be	microsecond,	millisecond,	second,	minute,	
hour,	day,	week,	month,	year,	decade,	century,	millennium,	or	their	abbreviations,	singular	
or	plural;	direction	can	be	ago	or	empty.	The	at	(@)	sign	is	an	optional	noise.	Quantities	in	
different	units	are	implicitly	added	using	an	appropriate	sign	accounting.	This	syntax	is	
also	used	for	interval	output	when	IntervalStyle	is	set	to	postgres_verbose.	

Days,	hours,	minutes	and	seconds	can	be	specified	without	explicitly	marking	units.	For	
example,	"1	12:59:10"	is	read	the	same	as	"1	day	12	hours	59	min	10	sec."	

Combinations	of	years	and	months	can	be	specified	using	dashes	as	well.	For	example,	
"200-10"	is	read	the	same	as	"200	years	10	months."	(This	short	format	is	actually	the	only	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

one	allowed	by	the	SQL	standards,	and	is	used	for	output	if	IntervalStyle	is	set	to	
sql_standard).	

The	format	using	specifiers:	

P quantity unit [quantity unit ...] [T [quantity unit ...]]	

The	string	must	contain	P,	and	may	contain	T	to	include	the	unit	of	time.	Available	unit	
abbreviations	are	listed	in	the	table	below.	Units	can	be	omitted	and	can	be	specified	in	any	
order,	but	units	of	less	than	one	day	must	appear	after	T.	In	particular,	the	meaning	of	M	
varies	depending	on	whether	it	is	before	or	after	T.	
		
	Table	[ISO	8601	Interval	Unit	Abbreviations]	

Abbreviation	 Meaning	

Y	 Year	

M	 Month(in	the	date	part)	

W	 Week	

D	 Day	

H	 Hour	

M	 Minute(in	the	time	part)	

S	 Second	

Alternative	format:	

P [years-months-days] [T hours:minutes:seconds]	

The	string	must	start	with	P,	and	T	separates	the	date	and	time	of	the	interval.	The	value	is	
specified	as	a	number	similar	to	the	ISO	8601	date.	If	you	create	an	interval	constant	with	
the	fields	specification,	or	if	you	assign	a	string	to	an	interval	column	defined	by	the	fields	
specification,	the	interpretation	of	the	unmarked	quantity	varies	depending	on	the	fields.	
For	example,	INTERVAL	'1'	YEAR	is	interpreted	as	a	year,	whereas	INTERVAL	'1'	means	1	
second.	The	lowest	right	field	value	allowed	by	the	fields	specification	is	ignored.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

For	example,	INTERVAL	'1	day	2:03:04'	HOUR	TO	MINUTE	will	eventually	delete	the	
"seconds"	field	(not	the	date	field).	As	all	fields	of	interval	values	must	have	the	same	signs	
according	to	the	SQL	standards,	the	leading	negative	signs	apply	to	all	fields.	For	example,	
the	negative	sign	in	the	interval	literal	'-1	2:03:04'	applies	to	both	date	and	
hour/minute/second	parts.	As	the	fields	are	allowed	to	have	different	signs	and	the	signs	of	
each	field	are	independently	processed	in	text	representation,	the	hour/minute/second	
part	is	regarded	as	a	positive	value	in	this	example.	If	IntervalStyle	is	set	to	sql_standard,	
the	leading	sign	is	assumed	to	be	applied	to	all	fields	(if	there	is	no	additional	sign).	

If	the	field	is	negative,	it	is	better	to	explicitly	append	the	(negative)	sign	to	avoid	ambiguity.	
Internally,	interval	values	are	stored	as	months,	days,	and	seconds.	This	is	because	the	
number	of	days	in	the	month	is	different,	and	a	day	can	be	23	or	25	hours	depending	on	
implementation	of	daylight	saving	time.	The	month	and	day	fields	are	integers,	and	the	
seconds	field	can	be	stored	as	decimals.	Since	the	interval	is	usually	generated	by	constant	
strings	or	timestamp	subtraction,	this	way	of	storage	is	not	problematic	in	most	cases.	The	
functions	justify_days	and	justify_hours	are	useful	when	you	want	to	control	overflowing	
days	and	times	in	the	normal	range.	Field	values	in	some	fields	of	the	detailed	input	format	
and	the	simpler	input	field	may	have	a	decimal	fraction	(e.g.	"1.5	week"	or	"01:02:03.45").	
These	inputs	are	converted	to	an	appropriate	number	of	months,	days,	and	seconds	for	
storage.	This	results	in	the	decimal(s)	of	months	or	days	being	added	to	a	subfield	using	the	
conversion	factor	Jan=30	days	and	1	day=24	hours.	For	example,	"1.5	month"	is	one	month	
and	15	days.	Only	the	seconds	are	displayed	with	a	decimal	fraction.	The	table	below	shows	
some	examples	of	valid	interval	inputs.			
	Table	[Interval	Input]	

Example	 Description	

1-2	 SQL	standard	format:	1	year	2	months	

3	4:05:06	 SQL	standard	format:	3	days	4	hours	5	minutes	6	
seconds	

1	year	2	months	3	days	4	hours	5	
minutes	6	seconds	

Typical	Postgres	format:	1	year	2	months	3	days	4	
hours	5	minutes	6	seconds	

P1Y2M3DT4H5M6S	 ISO	8601	"format	with	designators":	same	as	
above	

P0001-02-03T04:05:06	 ISO	8601	"alternative	format":	same	as	above	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Interval Output

The	output	format	of	interval	type	can	be	set	to	one	of	the	four	styles	sql_standard,	
postgres,	postgres_verbose,	or	iso_8601	using	the	command	SET	intervalstyle.	The	default	
is	postgres.	The	table	below	shows	an	example	of	each	output	style.	The	sql_standard	style	
generates	an	output	that	conforms	to	the	SQL	standard	specification	for	the	interval	literal	
string	if	the	interval	value	satisfies	the	standard	limit	(year-month	or	day-minute	only	if	
positive	and	negative	values	are	not	mixed).	Otherwise,	a	sign	is	explicitly	added	to	
eliminate	the	confusion	of	the	sign	mixing	interval;	the	output	appears	as	if	the	standard	
year-month	literal	string	is	followed	by	a	day-time	literal	string.			
	Table	[Example	of	interval	output	style]	

Style	
Specification	

Year-Month	
Interval	 Day-Time	Interval	 Mixed	Interval	

sql_standard	 1-2	 3	4:05:06	 -1-2	+3	-4:05:06	

postgres	 1	year	2	mons	 3	days	04:05:06	 -1	year	-2	mons	+3	days	-
04:05:06	

postgres_verbose	 @	1	year	2	
mons	

@	3	days	4	hours	5	
mins	6	secs	

@	1	year	2	mons	-3	days	4	
hours	5	mins	6	secs	ago	

iso_8601	 P1Y2M	 P3DT4H5M6S	 P-1Y-2M3DT-4H-5M-6S	

Boolean Type

It	provides	a	standard	SQL	type	boolean;	on	top	of	"true"	and	"false"	states,	it	has	
"unknown,"	a	third	state	that	is	expressed	as	SQL	null.	

Name	 Storage	Size	 Description	

boolean	 1	byte	 True	or	False	state	

• Valid	literal	values	in	the	true	state	are:	

	 TRUE	
't'	
'true'	
'y'	
'yes'	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

'on'	
'1'	

• In	the	false	state,	you	may	use	the	following	values:	

	 FALSE	
'f'	
'false'	
'n'	
'no'	
'off'	
'0'	

Leading	or	trailing	blanks	are	ignored	and	it	is	not	case	sensitive.	Using	the	keywords	TRUE	
and	FALSE	is	preferred.	The	following	example	shows	that	a	boolean	value	is	displayed	
(output)	using	the	characters	t	and	f.	

An	example	of	using	the	boolean	type:	

CREATE TABLE test1 (a boolean, b text); 	
	
INSERT INTO test1 VALUES (TRUE, 'sic est'); 	
INSERT INTO test1 VALUES (FALSE, 'non est'); 	
	
SELECT * FROM test1;	
a | b	
---+---------	
t | sic est 	
f | non est	
	
SELECT * FROM test1 WHERE a;	
a | b	
---+---------	
t | sic est	

Geometric Types

Geometric	types	display	two-dimensional	spatial	objects	and	the	available	geometric	types	
are	as	follows:	

Name	 Storage	Size	 Description	 Representation	

point	 16bytes	 Point	on	the	plane	 (x,y)	

line	 32bytes	 Infinite	straight	line	 {A,B,C}	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

lseg	 32bytes	 Infinite	segment	 ((x1,y1),(x2,y2))	

box	 32bytes	 Square	box	 ((x1,y1),(x2,y2))	

path	 16+16n	
bytes	

Closed	path	(similar	to	a	
polygon)	

((x1,y1),...)	

path	 16+16n	
bytes	

|	Open	path	 |	[(x1,y1),...]	

polygon	 40+16n	
bytes	

Polygon	(similar	to	a	closed	
path)	

((x1,y1),...)	

circle	 24bytes	 Circle	 <(x,y),r>	(Center	point	and	
radius)	

Points

Points	are	the	basic	two-dimensional	building	blocks	for	geometric	types.	The	value	of	
point	type	is	specified	using	one	of	the	following	syntaxes:	

(x , y)	
 x , y	

Where	x	and	y	are	the	floating-point	coordinates,	respectively.	Points	are	output	using	the	
first	syntax.	

Lines

Lines	are	expressed	by	a	linear	equation	Ax+By+C=0;	where	A	and	B	are	both	nonzero.	The	
value	of	line	type	is	the	input	and	output	in	the	following	format.	

{ A, B, C }	

Alternatively,	you	can	use	one	of	the	following	formats	for	input:	

[(x1 , y1) , (x2 , y2)]	
((x1 , y1) , (x2 , y2))	
 (x1 , y1) , (x2 , y2)	
 x1 , y1 , x2 , y2	

Where	(x1,	y1)	and	(x2,	y2)	are	two	different	points	on	a	straight	line.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Line Segments

A	line	segment	is	represented	by	a	pair	of	points	that	form	the	two	end	points	of	a	line	
segment.	The	value	of	lseg	type	is	specified	using	one	of	the	following	syntaxes.	

[(x1 , y1) , (x2 , y2)]	
((x1 , y1) , (x2 , y2))	
 (x1 , y1) , (x2 , y2)	
 x1 , y1 , x2 , y2	

Where	(x1,	y1)	and	(x2,	y2)	are	the	two	end	points	of	a	line	segment.	The	Line	Segment	is	
output	using	the	first	syntax.	

Boxes

A	box	is	represented	by	a	pair	of	points	that	form	the	opposite	corners	of	the	box.	The	value	
of	box	type	is	specified	using	one	of	the	following	syntaxes:	

((x1 , y1) , (x2 , y2))	
 (x1 , y1) , (x2 , y2)	
 x1 , y1 , x2 , y2	

Where	(x1,	y1)	and	(x2,	y2)	are	the	two	opposite	corners	of	the	box.	A	box	is	output	using	
the	second	syntax.	Two	opposite	corners	are	provided	as	inputs,	but	values	are	reordered	
as	needed	to	be	saved	as	upper	right	corner	and	lower	left	corner.	

Paths

A	path	is	represented	by	a	list	of	connected	points.	If	the	first	and	last	points	of	the	list	are	
considered	unconnected,	it	is	an	open	path.	If	the	first	and	last	points	are	considered	to	be	
connected,	it	is	a	closed	path.	The	value	of	path	type	is	specified	using	one	of	the	following	
syntaxes:	

[(x1 , y1) , ... , (xn , yn)]	
((x1 , y1) , ... , (xn , yn))	
 (x1 , y1) , ... , (xn , yn)	
 (x1 , y1 , ... , xn , yn)	
 x1 , y1 , ... , xn , yn	

Where	the	points	are	the	two	end	points	of	a	line	segment	constituting	the	path.	Square	
brackets	([])	indicate	open	paths	and	parentheses	(())	indicate	closed	paths.	If	the	
outermost	parentheses	are	omitted,	as	in	the	third	through	fifth	statements,	they	are	
considered	closed	paths.	The	path	is	output	using	the	second	syntax	properly.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Polygons

Polygons	are	represented	by	a	list	of	points	(polygon	vertices).	Polygons	are	very	similar	to	
closed	paths,	but	are	stored	differently	and	have	their	own	set	of	routines	supported.	The	
value	of	polygon	type	is	specified	using	one	of	the	following	syntaxes:	

((x1 , y1) , ... , (xn , yn))	
 (x1 , y1) , ... , (xn , yn)	
 (x1 , y1 , ... , xn , yn)	
 x1 , y1 , ... , xn , yn	

Where	the	points	are	the	two	end	points	of	a	line	segment	constituting	the	boundary	of	the	
polygon.	The	polygon	is	output	using	the	first	syntax.	

Circles

A	circle	is	represented	by	the	center	point	and	radius.	The	value	of	circle	type	is	specified	
using	one	of	the	following	syntaxes:	

< (x , y) , r >	
((x , y) , r)	
 (x , y) , r	
 x , y , r	

Where	(x,	y)	is	the	center	of	the	circle	and	r	is	the	radius.	Circle	is	output	using	the	first	
syntax.	

XML Type

The	XML	type	is	used	to	store	XML	data.	It	allows	you	to	inspect	input	values	in	a	well-
formed	format	rather	than	storing	XML	data	in	a	text	field,	and	has	functions	that	supports	
safe	operations.	This	data	type	requires	an	installation	built	with	configure	--with-libxml.	

Creating XML Values

To	generate	an	xml	type	value	from	character	data,	use	the	function	below:	

XMLPARSE ({ DOCUMENT | CONTENT } value)	

Examples:	

XMLPARSE (DOCUMENT '<?xml version="1.0"?><book><title>Manual</title><chapter
>...</chapter></book>')	
XMLPARSE (CONTENT 'abc<foo>bar</foo><bar>foo</bar>')	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

The	XML	type	does	not	check	the	input	value	for	the	document	type	definition	(DTD)	even	
if	the	input	value	is	specified	as	DTD.	It	does	not	support	validation	of	other	XML	schema	
languages	(e.g.	XML	schema).	

The	inverse	operation	to	generate	a	string	value	in	xml	uses	the	following	function:	

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)	

type	can	be	character,	character	varying,	text	(or	an	alias	in	it).	According	to	the	SQL	
standard,	this	is	the	only	way	to	convert	XML	and	character	types,	but	may	simply	cast	the	
values.	

Choosing	DOCUMENT	and	CONTENT	is	determined	by	the	"XML	Option"	session	
configuration	parameters,	which	can	be	set	using	standard	commands	when	a	string	value	
is	cast	to	xml	type	or	passes	through	XMLSARIALIZE	without	going	through	XMLPARSE	or	
XMLSERIALIZE.	

SET xmloption TO { DOCUMENT | CONTENT };	

As	the	default	is	CONTENT,	XML	data	in	any	format	are	allowed.	

Note: You cannot directly convert a string containing DTD to an XML format, since the definition of an XML content
fragment does not allow XML if the default XML option settings are used. You should use XMLPARSE or change the
XML option.

Encoding Handling

Care	should	be	taken	when	you	process	multiple	character	encodings	on	the	client	and	
when	XML	data	is	passed	through	it.	If	you	use	text	mode	to	pass	a	query	to	the	server	and	
pass	a	query	result	to	the	client	(normal	mode),	convert	all	character	data	passed	between	
the	client	and	server,	and	convert	the	character	encoding	backwards	at	each	end.	It	
contains	a	text	representation	of	the	XML	value	as	shown	in	the	example	above.	Usually	this	
implies	that	the	encoding	declaration	contained	in	the	XML	data	can	be	invalidated,	as	the	
embedded	encoding	declaration	does	not	change,	if	the	character	data	is	converted	to	
another	encoding	during	transmission	between	the	client	and	server.	To	cope	with	this	
behavior,	the	encoding	declaration	contained	in	the	character	string	that	exists	for	the	XML	
type	input	is	ignored	and	CONTENT	is	regarded	as	the	current	server	encoding.	As	a	result,	
strings	of	XML	data	must	be	transmitted	from	the	client	through	the	current	client	
encoding	for	proper	processing.	It	is	the	client's	responsibility	to	convert	the	document	to	
the	current	client	encoding	or	to	properly	adjust	the	client	encoding	before	sending	it	to	the	
server.	The	value	of	type	XML	in	the	output	does	not	have	an	encoding	declaration,	and	the	
client	considers	all	data	to	be	the	current	client	encoding.	

If	you	use	binary	mode	to	pass	query	parameters	to	the	server	and	pass	the	query	results	
back	to	the	client,	the	character	set	conversion	is	not	performed,	making	things	more	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

difficult.	In	this	case,	the	encoding	declaration	of	the	XML	data	is	complied	with;	if	absent,	
the	data	is	assumed	to	be	UTF-8	(note	that	this	is	required	by	the	XML	standard	and	does	
not	support	UTF-16).	At	the	output,	the	data	has	an	encoding	declaration	specifying	the	
client	encoding,	if	it	is	not	the	client	encoding	is	UTF-8;	if	it	is,	the	encoding	declaration	will	
be	omitted.	

Processing	XML	data	is	less	likely	to	cause	errors,	and	is	more	efficient	when	the	XML	data	
encoding,	client	encoding,	and	server	encoding	are	all	identical.	Since	XML	data	is	internally	
processed	as	UTF-8,	the	calculation	is	most	efficient	when	the	server	is	UTF-8	as	well.	

Note: Some XML-related functions may not work with non-ASCII data if the server encoding is not UTF-8. This is
especially known as a problem in xpath ().

Accessing XML Values

The	XML	data	type	is	unique	in	that	it	does	not	provide	a	comparison	operator.	This	is	
because	there	is	no	well-defined	and	universally	useful	comparison	algorithm	for	XML	data.	
As	a	result,	you	cannot	retrieve	a	row	by	comparing	the	xml	column	with	the	search	value.	
You	must	use	XML	with	a	separate	key	field	(e.g.	ID).	An	alternative	solution	to	compare	
XML	values	is	to	convert	it	to	a	string	first.	Note,	however,	that	string	comparisons	have	
nothing	to	do	with	useful	XML	comparison	methods.	

Since	there	is	no	comparison	operator	for	XML	data	types,	it	is	not	possible	to	create	an	
index	directly	on	this	type	of	column.	If	you	need	to	retrieve	XML	data	fast,	the	possible	
solutions	include	casting	and	indexing	expressions	to	character	string	types	or	indexing	
XPath	expressions.	Of	course,	the	search	should	be	adjusted	by	the	indexed	expressions	in	
actual	querying.	

The	text	search	feature	can	also	be	used	to	speed	up	retrieval	of	entire	documents	in	XML	
data.	However,	the	necessary	preprocessing	support	is	not	yet	available.	

JSON Types

The	JSON	data	type	is	for	storing	JavaScript	Object	Notation	(JSON)	data	as	specified	in	RFC	
71591.	The	applicable	data	can	also	be	saved	as	text,	but	the	JSON	data	type	has	an	
advantage	of	enforcing	each	stored	value	to	be	valid	according	to	the	JSON	rules.	There	are	
also	a	number	of	JSON-specific	functions	and	operators	available	for	these	types	of	stored	
data.	

There	are	two	JSON	data	types:	JSON	and	JSONB.	These	two	types	accept	almost	the	same	
set	of	values	as	input.	A	substantial	difference	between	the	two	is	efficiency.	The	JSON	data	
type	stores	an	exact	copy	of	the	input	text,	and	its	processing	function	must	be	re-parsed	
for	each	execution.	On	the	other	hand,	the	JSONB	data	is	stored	in	decomposed	binary	
format,	which	is	a	bit	slower	on	input	due	to	the	added	conversion	overhead,	but	much	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

faster	during	processing	because	no	re-parsing	is	required.	JSONB	also	supports	indexing,	
which	can	be	a	significant	advantage.	

The	JSON	type	stores	exact	copies	of	the	input	text,	preserving	syntactically-insignificant	
whitespace	between	tokens	and	key	sequences	in	the	JSON	object.	In	addition,	if	a	JSON	
object	inside	a	value	contains	the	same	key	more	than	once,	all	key/value	pairs	are	retained.	
(Processing	functions	assume	the	last	value	is	valid.)	Conversely,	JSONB	does	not	retain	
whitespace,	the	order	of	the	object	keys,	and	duplicate	object	keys.	If	a	duplicate	key	is	
specified	in	the	input,	only	the	last	value	is	retained.	In	general,	most	applications	should	
store	JSON	data	as	JSONB	unless	there	is	a	specific	reason	such	as	existing	assumptions	
about	object	key	ordering.	Only	one	character	set	encoding	per	database	is	allowed.	
Therefore,	when	the	database	encoding	is	not	UTF8,	it	is	impossible	for	the	JSON	type	to	
strictly	comply	with	the	JSON	specification.	Attempts	to	directly	include	characters	that	
cannot	be	represented	in	the	database	encoding	would	fail.	In	contrast,	characters	that	
cannot	be	represented	by	UTF8	but	can	be	represented	by	database	encoding	are	allowed.	
RFC	7159	allows	a	JSON	string	to	contain	a	Unicode	escape	sequence	denoted	by	\uXXXX.	In	
a	JSON	type	input	function,	Unicode	escapes	are	allowed	regardless	of	the	database	
encoding,	and	are	checked	for	syntactical	correctness	(i.e.	\u	followed	by	four	hexadecimal	
digits).	However,	the	input	function	for	JSONB	is	stricter.	When	the	database	encoding	is	
not	UTF8,	it	does	not	allow	Unicode	escapes	for	non-ASCII	characters	(U+007F	and	above).	
In	addition,	in	JSONB	types,	use	of	a	Unicode	surrogate	pair	that	denies	\u0000	(as	it	cannot	
be	represented	as	a	text	type)	and	specifies	characters	out	of	the	Unicode	Basic	Multilingual	
Plane	(BMT)	must	be	correct;	it	is	converted	to	ASCII	or	UTF8	characters	corresponding	to	
a	valid	Unicode	escape	and	stored	(overlapping	surrogate	pairs	are	included	as	a	single	
character).	

Note: Many JSON processing functions convert Unicode escapes to regular characters, and thus return an error
even if the input is of type json rather than jsonb. In general, it is best not to mix Unicode escapes with UTF8
database encodings in JSON whenever possible.

If	you	convert	the	text	JSON	input	to	JSONB,	the	primitive	types	described	in	RFC	7159	are	
effectively	mapped	to	the	native	AgensGraph	types,	as	shown	in	Table	8-23.	Accordingly,	
several	local	constraints	that	do	not	apply	to	the	JSON	type	and	JSON	(even	abstractly)	and	
that	constitute	valid	JSONB	data	are	added;	this	corresponds	to	a	restriction	on	whether	it	
can	be	represented	as	a	primitive	data	type	or	not.	In	particular,	JSONB	rejects	numbers	
that	are	outside	the	range	of	the	AgensGraph	numeric	data	type	and	that	do	not	leave	JSON.	
Constraints	on	which	the	corresponding	implementations	are	defined	are	allowed	by	RFC	
7159.	In	practice,	however,	this	problem	is	much	more	common	in	other	implementations,	
as	JSON's	number	base	type	is	commonly	used	to	represent	IEEE	754	double	floating	point	
(explicitly	predicted	and	allowed	in	RFC	7159).	If	you	use	JSON	in	interchange	format	with	
the	system,	you	should	consider	the	risk	of	loss	of	numeric	precision	when	compared	to	the	
original	data	stored	in	AgensGraph.	Conversely,	there	are	some	local	constraints	on	the	
input	type	of	the	JSON	base	type	that	do	not	apply	to	the	corresponding	AgensGraph	type,	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

as	shown	in	the	table.	
		
	[JSON	basic	type	and	corresponding	AgensGraph	type]	

JSON	primitive	
type	 Type	 Notes	

string	 text	 If	the	database	encoding	is	not	UTF8,	000	is	not	allowed	as	it	
is	a	non-ASCII	Unicode	escape	

number	 numeric	 NaN	and	infinity	values	are	not	allowed	

boolean	 boolean	 Only	lowercase	spelling	true	and	false	are	accepted	

null	 (없음)	 SQL	NULL	is	conceptually	different	

JSON Input and Output Syntax

The	input/output	syntaxes	in	the	JSON	data	type	can	be	specified	as	in	RFC	7159.	The	
following	example	shows	all	valid	JSON	(or	JSONB)	expressions.	

-- Simple scalar/primitive value	
-- Primitive values can be numbers, quoted strings, true, false, or null	
SELECT '5'::json;	
	
-- Array of zero or more elements (elements need not be of same type)	
SELECT '[1, 2, "foo", null]'::json;	
	
-- Object containing pairs of keys and values	
-- Note that object keys must always be quoted strings	
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;	
	
-- Arrays and objects can be nested arbitrarily	
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;	

As	mentioned	earlier,	when	a	JSON	value	is	input	and	printed	without	further	processing,	
JSON	outputs	the	same	text	as	the	input,	and	JSONB	does	not	retain	syntactically-
insignificant	content	(e.g.	spaces).	Refer	to	the	differences	presented	below.	

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;	
 json 	

 {"bar": "baz", "balance": 7.77, "active":false}	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

(1 row)	
	
SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;	
 jsonb 	
--	
 {"bar": "baz", "active": false, "balance": 7.77}	
(1 row)	

One	thing	to	note,	though	not	syntactically-significant,	is	that	it	is	in	JSONB,	where	numbers	
are	printed	according	to	the	default	numeric	type.	In	practice,	this	means	that	the	number	
marked	as	"e"	will	be	omitted	when	printed.	Here	is	an	example:	

SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}'::jsonb;	
 json | jsonb 	
-----------------------+-------------------------	
 {"reading": 1.230e-5} | {"reading": 0.00001230}	
(1 row)	

As	shown	in	this	example,	however,	JSONB	preserves	the	trailing	zero	(0)	for	checkup	even	
if	it	is	syntactically-insignificant.	

Designing JSON documents effectively

Expressing	data	in	JSON	can	be	much	more	flexible	than	that	in	traditional	relational	data	
models	where	requirements	are	enforced	in	a	variable	environment.	Both	methods	may	
coexist	and	complement	each	other	in	the	same	application.	However,	in	applications	that	
require	maximum	flexibility,	it	is	recommended	that	the	JSON	documents	have	a	slightly	
fixed	structure.	Structures	are	not	generally	applicable	(you	can	also	apply	some	business	
rules	declaratively),	but	using	a	predictable	structure	makes	it	easier	to	write	queries	that	
usefully	summarize	a	"document"	(datum)	set	of	tables.	JSON	data	is	affected	by	the	same	
concurrency	control	considerations	as	other	data	types	when	stored	in	tables.	It	should	be	
noted	that,	even	though	it	is	feasible	to	store	a	large	document,	updates	obtain	row-level	
locking	for	the	entire	row.	You	should	consider	limiting	the	JSON	document	to	a	
manageable	size	in	order	to	reduce	lock	contention	between	update	transactions.	In	
principle,	JSON	documents	indicate	that	the	atomic	data	pointed	by	business	rules	cannot	
be	segmented	into	smaller	datums,	each	of	which	can	be	modified	independently.	

JSONB Containment and Existence

Testing	containment	is	an	important	feature	of	JSONB.	There	is	no	feature	set	similar	to	the	
JSON	type.	Containment	tests	whether	a	single	JSONB	document	is	contained	in	another	
document.	This	example	returns	true	except	where	noted.	

-- Simple scalar/primitive values contain only the identical value:	
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	
-- The array on the right side is contained within the one on the left:	
SELECT '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;	
	
-- Order of array elements is not significant, so this is also true:	
SELECT '[1, 2, 3]'::jsonb @> '[3, 1]'::jsonb;	
	
-- Duplicate array elements don't matter either:	
SELECT '[1, 2, 3]'::jsonb @> '[1, 2, 2]'::jsonb;	
	
-- The object with a single pair on the right side is contained	
-- within the object on the left side:	
SELECT '{"product": "PostgreSQL", "version": 9.4, "jsonb": true}'::jsonb 	
 @> '{"version": 9.4}'::jsonb;	
	
-- The array on the right side is not considered contained within the	
-- array on the left, even though a similar array is nested within it:	
SELECT '[1, 2, [1, 3]]'::jsonb @> '[1, 3]'::jsonb; -- yields false	
	
-- But with a layer of nesting, it is contained:	
SELECT '[1, 2, [1, 3]]'::jsonb @> '[[1, 3]]'::jsonb;	
	
-- Similarly, containment is not reported here:	
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"bar": "baz"}'::jsonb; -- yield
s false	
	
-- A top-level key and an empty object is contained:	
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"foo": {}}'::jsonb;	

The	general	principle	is	that	the	structure	and	data	content	of	the	contained	objects	are	
consistent	with	the	containing	objects.	It	may	be	possible	after	discarding	unmatched	
(inconsistent)	array	elements	or	object	key/value	pairs	from	the	containing	object.	
However,	when	comparing	containments,	the	order	of	array	elements	is	not	important,	and	
duplicate	array	elements	are	actually	considered	only	once.	

As	a	special	exception	to	the	general	principle	that	structures	must	be	matched,	arrays	may	
contain	primitive	values.	

-- This array contains the primitive string value:	
SELECT '["foo", "bar"]'::jsonb @> '"bar"'::jsonb;	
	
-- This exception is not reciprocal -- non-containment is reported here:	
SELECT '"bar"'::jsonb @> '["bar"]'::jsonb; -- yields false	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

JSONB	has	the	existence	operator	that	is	a	variation	of	the	containing	theme,	which	tests	
whether	a	string	(specified	as	a	text	value)	appears	at	the	top	level	of	the	JSONB	value	as	an	
object	key	or	array	element.	This	example	returns	true,	except	where	noted.	

-- String exists as array element:	
SELECT '["foo", "bar", "baz"]'::jsonb ? 'bar';	
	
-- String exists as object key:	
SELECT '{"foo": "bar"}'::jsonb ? 'foo';	
	
-- Object values are not considered:	
SELECT '{"foo": "bar"}'::jsonb ? 'bar'; -- yields false	
	
-- As with containment, existence must match at the top level:	
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields false	
	
-- A string is considered to exist if it matches a primitive JSON string:	
SELECT '"foo"'::jsonb ? 'foo';	

Unlike	arrays,	JSON	objects	are	optimized	internally	for	search	and	do	not	perform	linear	
searches.	This	means	that	they	are	more	suitable	than	arrays	that	test	for	containment	or	
existence	when	there	are	many	related	keys	and	elements.	

JSONB Indexing

The	GIN	index	can	be	used	to	efficiently	search	for	a	key	or	a	key/value	pair	in	a	number	of	
JSONB	documents	(datums).	Two	GIN	"operator	classes"	with	different	performance	and	
flexibility	tradeoffs	are	provided.	The	default	GIN	operator	classes	for	JSONB	support	
queries	using	operators	such	as	@>,	?,	?&,	and	?|.	Here	is	an	example	of	creating	an	index	
within	this	operator	class:	

CREATE INDEX idxgin ON api USING GIN (jdoc);	

jsonb_path_ops,	which	is	not	a	default	GIN	operator	class,	supports	indexing	of	@>	operator	
only.	Here	is	an	example	of	creating	an	index	within	this	operator	class:	

CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);	

Consider	a	table	example	that	stores	a	JSON	document	retrieved	from	a	third-party	Web	
service	using	a	documented	schema	definition.	The	general	document	will	be	as	follows:	

{	
 "guid": "9c36adc1-7fb5-4d5b-83b4-90356a46061a",	
 "name": "Angela Barton",	
 "is_active": true,	
 "company": "Magnafone",	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 "address": "178 Howard Place, Gulf, Washington, 702",	
 "registered": "2009-11-07T08:53:22 +08:00",	
 "latitude": 19.793713,	
 "longitude": 86.513373,	
 "tags": [
 "enim",	
 "aliquip",	
 "qui"	
]	
}	

Save	this	document	as	a	JSONB	column	called	jdoc	in	a	table	called	api.	When	a	GIN	index	is	
created	in	this	column,	the	following	query	uses	the	index.	

-- Find documents in which the key "company" has value "Magnafone"	
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"company": "Magnaf
one"}';	

However,	even	though	the	operator	"?"	can	be	indexed,	it	is	not	directly	applied	to	the	
indexed	column	jdoc.	Thus,	the	index	cannot	be	used	in	the	following	query.	

-- Find documents in which the key "tags" contains key or array element "qui"	
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';	

Still,	the	above	query	can	use	the	index,	if	an	expression	index	is	properly	used.	If	a	query	
for	a	particular	item	is	common	within	the	"tags"	key,	an	index	definition	like	the	one	below	
is	useful.	

CREATE INDEX idxgintags ON api USING GIN ((jdoc -> 'tags'));	

WHERE	clause	jdoc->'tags'	?	'qui'	is	an	application	of	the	indexable	operator	"?"	and	the	
indexed	expression	jdoc	->	'tags'	is	recognized.	

Another	way	to	query	is	to	make	the	best	use	of	containment.	For	example,	a	simple	GIN	
index	on	a	jdoc	column	can	support	this	query.	

-- Find documents in which the key "tags" contains array element "qui"	
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"tags": ["qui"]}';	

However,	while	these	indexes	store	copies	of	all	the	keys	and	values	of	the	jdoc	column,	the	
expression	index	in	the	previous	example	stores	only	the	data	found	under	the	tags	key.	It	
is	true	that	the	simple	index	approach	is	much	more	flexible	(as	it	supports	queries	on	
arbitrary	keys),	but	the	targeted	expression	index	is	much	smaller	and	more	fast-searched	
than	the	simple	index.	

The	jsonb_path_ops	operator	class	only	supports	queries	using	@>	operator,	but	it	has	a	
good	performance	advantage	over	the	default	operator	class,	jsonb_ops.	With	the	same	data,	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

the	size	and	search	specificity	of	the	jsonb_path_ops	index	are	generally	much	smaller	and	
better	than	those	of	the	jsonb_ops	index,	respectively.	This	is	especially	true	for	queries	
that	contain	keys	that	appear	frequently	in	the	data.	Searches	with	this	class	are	therefore	
generally	much	better	than	using	the	default	operator	class.	

A	technical	difference	between	jsonb_ops	and	jsonb_path_ops	GIN	indexes	is	that	the	
former	creates	index	entries	that	are	independent	for	each	key	and	value	of	the	data,	while	
the	latter	only	creates	index	entries	for	the	data	values.	By	default,	each	jsonb_path_ops	
index	entry	is	a	hash	of	values	and	keys	leading	to	it.	Let's	take	a	look	at	an	index	{"foo":	
{"bar":	"baz"}	as	an	example;	a	single	index	entry	is	generated	by	combining	all	three	of	foo,	
bar	and	baz	into	a	hash	value.	Thus,	a	constraint	query	that	looks	for	such	a	structure	
results	in	an	extremely	specific	index	search.	However,	there	is	no	way	to	know	at	all	
whether	foo	will	appear	as	a	key.	Conversely,	the	jsonb_ops	index	creates	three	index	
entries	that	represent	foo,	bar,	and	baz,	respectively.	Then,	to	execute	a	constraint	query,	it	
looks	up	a	row	that	contains	all	three	of	these	items.	A	GIN	index	can	perform	its	AND	
search	very	efficiently,	but	is	less	specific	and	slower	than	an	equivalent	jsonb_path_ops	
search,	especially	when	there	are	a	great	deal	of	rows	containing	one	of	the	three	index	
entries.	A	disadvantage	of	the	jsonb_path_ops	approach	is	that	it	does	not	create	index	
entries	for	JSON	structures	that	do	not	contain	values	such	as	{"a":	{}}.	A	full	index	scan	is	
required	if	a	document	search	containing	the	structure	is	requested,	which	is	very	slow.	
Thus,	jsonb_path_ops	is	not	suitable	for	applications	that	perform	frequent	searches.	JSONB	
also	supports	btree	and	hash	indexes,	which	is	useful	only	when	checking	the	equivalence	
of	the	entire	JSON	document.	The	B-tree	ordering	of	JSONB	data	is	not	that	important,	but	is	
necessary	for	completeness.	

Object > Array > Boolean > Number > String > Null	
	
Object with n pairs > object with n - 1 pairs	
	
Array with n elements > array with n - 1 elements	

Objects	that	have	the	same	number	of	pairs	are	compared	in	the	following	order:	

key-1, value-1, key-2 ...	

Object	keys	are	compared	in	the	order	of	storage;	in	particular,	storing	short	keys	in	front	
of	long	keys	leads	to	non-intuitive	results:	

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}	

Similarly,	arrays	with	the	same	number	of	elements	are	compared	in	the	following	order:	

element-1, element-2 ...	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

The	native	JSON	values	are	compared	using	the	comparison	rules,	which	also	apply	to	the	
primitive	data	types.	Strings	are	compared	using	the	default	database	collation.	

Arrays

Arrays	allow	the	column	type	of	the	table	to	be	defined	as	a	variable	length	
multidimensional	array.	You	can	create	arrays	of	built-in	or	user-defined	base	types,	enum	
types,	or	composite	types.	Arrays	of	domains	are	not	yet	supported.	

Declaration of Array Types

In	order	to	explain	use	of	array	types,	let's	create	a	table	as	follows:	

CREATE TABLE sal_emp (
 name text,	
 pay_by_quarter integer[],	
 schedule text[][]	
);	

As	indicated,	the	array	data	type	is	named	by	adding	square	brackets	([])	to	the	array	
element's	data	type	name.	The	above	command	creates	a	table	called	sal_emp	with	a	
column	of	type	text	(name),	where	a	one-dimensional	array	of	type	integer	(pay_by_quarter)	
represents	the	employee's	quarterly	salary	and	a	two-dimensional	array	of	text	(schedule)	
indicates	the	employee's	weekly	schedule.	CREATE	TABLE	allows	the	exact	size	of	the	array	
to	be	specified.	For	example:	

CREATE TABLE tictactoe (
squares integer[3][3]	
);	

However,	the	current	implementation	ignores	the	array	size	limits	provided.	That	is,	the	
operation	is	the	same	as	an	array	of	unspecified	length.	The	current	implementation	does	
not	enforce	the	declared	number	of	dimensions.	Arrays	of	particular	element	types	are	
considered	to	be	of	the	same	type,	regardless	of	their	size	or	the	number	of	dimensions.	
Therefore,	declaring	an	array	size	or	the	number	of	dimensions	in	CREATE	TABLE	is	simply	
documentation	and	does	not	affect	runtime	behavior.	

You	can	utilize	the	keyword	ARRAY	to	use	an	alternative	syntax	that	conforms	to	the	SQL	
standard	for	one-dimensional	arrays.	pay_by_quarter	may	have	been	defined	as:	

pay_by_quarter integer ARRAY[4],	

If	the	array	size	is	not	specified:	

pay_by_quarter integer ARRAY,	

In	any	case,	however,	size	constraints	are	not	enforced.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Array Value Input

To	create	an	array	value	as	a	literal	constant,	place	the	value	in	braces	and	separate	it	with	
a	comma.	You	can	use	double	quotes	around	the	value;	you	should	do	this	if	it	contains	a	
comma	or	brace.	The	general	form	of	an	array	constant:	

'{ val1 delim val2 delim ... }'	

In	the	example	above,	delim	is	the	delimiter	for	the	type	recorded	in	the	pg_type	entry.	All	
of	the	standard	data	types	provided	by	the	AgensGraph	distribution	use	commas,	except	for	
the	type	box	that	uses	semicolons	(;).	Each	val	is	a	constant	of	the	array	element	type	or	
subarray.	For	example:	

'{{1,2,3},{4,5,6},{7,8,9}}'	

This	constant	is	a	two-dimensional	3x3	array	consisting	of	three	integer	sub-arrays.	To	set	
an	element	of	an	array	constant	to	NULL,	create	NULL	for	the	element	value.	(NULL	case	
can	be	changed.)	If	you	want	the	actual	string	value	"NULL,"	use	double	quotation	marks	
before	and	after	NULL.	(Constants	are	initially	processed	as	strings	and	passed	to	the	array	
input	conversion	routine,	which	may	require	explicit	type	specifications.)	

The	following	is	an	example	of	INSERT	statement	and	its	execution	result:	

INSERT INTO sal_emp	
 VALUES ('Bill',	
 '{10000, 10000, 10000, 10000}',	
 '{{"meeting", "lunch"}, {"training", "presentation"}}');	
	
INSERT INTO sal_emp	
 VALUES ('Carol',	
 '{20000, 25000, 25000, 25000}',	
 '{{"breakfast", "consulting"}, {"meeting", "lunch"}}');	
 	
SELECT * FROM sal_emp;	
 name | pay_by_quarter | schedule	
-------+---------------------------+---
--	
 Bill | {10000,10000,10000,10000} | {{meeting,lunch},{training,presentation}}	
 Carol | {20000,25000,25000,25000} | {{breakfast,consulting},{meeting,lunch}}	
(2 rows)	

A	multidimensional	array	must	have	a	matching	range	for	each	dimension,	and	an	
inconsistency	will	cause	the	following	error:	

INSERT INTO sal_emp	
 VALUES ('Bill',	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 '{10000, 10000, 10000, 10000}',	
 '{{"meeting", "lunch"}, {"meeting"}}');	
ERROR: multidimensional arrays must have array expressions with matching dim
ensions	

The	constructor	syntax	of	ARRAY	can	also	be	used.	

INSERT INTO sal_emp	
 VALUES ('Bill',	
 ARRAY[10000, 10000, 10000, 10000],	
 ARRAY[['meeting', 'lunch'], ['training', 'presentation']]);	
	
INSERT INTO sal_emp	
 VALUES ('Carol',	
 ARRAY[20000, 25000, 25000, 25000],	
 ARRAY[['breakfast', 'consulting'], ['meeting', 'lunch']]);	

An	array	element	is	a	regular	SQL	constant	or	expression.	A	string	literal	is	enclosed	in	
single	quotes	instead	of	double	quotes	as	in	an	array	literal.	

Accessing Arrays

You	can	run	some	queries	from	the	table	created	above.	Access	a	single	element	of	an	array.	
The	following	query	retrieves	the	name	of	the	employee	whose	salary	has	been	changed	in	
the	second	quarter.	

SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];	
	
 name	

 Carol	
(1 row)	

Array	numbers	are	enclosed	in	square	brackets;	use	array	notation	starting	from	1.	That	is,	
the	array	of	n	elements	starts	at	array[1]	and	ends	at	array[n].	

This	query	retrieves	the	salary	of	all	employees	for	the	third	quarter.	

SELECT pay_by_quarter[3] FROM sal_emp;	
	
 pay_by_quarter	

 10000	
 25000	
(2 rows)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

You	can	also	access	any	rectangular	slice	in	an	array	or	subarray.	An	array	slice	is	
represented	using	lower-bound:upper-bound	for	one	or	more	array	dimensions.	

For	example,	the	following	query	retrieves	the	first	item	in	Bill's	schedule	on	the	first	two	
days	of	the	week.	

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill';	
	
 schedule	

 {{meeting},{training}}	
(1 row)	

If	you	create	a	dimension	as	a	slice	(for	example,	including	a	colon),	all	dimensions	are	
processed	as	slices.	A	dimension	with	only	a	single	number	(no	colon)	is	processed	as	being	
from	1	to	the	specified	number.	For	example,	[2]	is	processed	as	[1:	2],	as	follows:	

SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill';	
	
 schedule	

 {{meeting,lunch},{training,presentation}}	
(1 row)	

To	avoid	confusion	in	non-slice	cases,	it	is	best	to	use	the	slice	syntax	for	all	dimensions	
such	as	[1:2]	[1:1]	rather	than	[2]	[1:1].	

You	can	omit	the	lower-bound	or	upper-bound	of	the	slice	specifier.	The	missing	bounds	
are	replaced	by	lower	or	upper	of	the	array,	as	shown	in	the	following	example:	

SELECT schedule[:2][2:] FROM sal_emp WHERE name = 'Bill';	
	
 schedule	

 {{lunch},{presentation}}	
(1 row)	
	
SELECT schedule[:][1:1] FROM sal_emp WHERE name = 'Bill';	
	
 schedule	

 {{meeting},{training}}	
(1 row)	

The	array	subscript	expression	returns	null	if	the	array	itself	or	subscript	expression	is	null.	
In	addition,	null	is	returned	if	the	subscript	is	out	of	the	bounds	of	the	array	(in	which	case	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

no	errors	are	produced).	For	example,	schedule	[3][3],	which	is	referenced	when	schedule	
is	the	current	dimension	[1:3]	[1:2],	prints	NULL.	Similarly,	an	array	referencing	an	
incorrect	number	of	subscripts	prints	null,	not	an	error.	

Array	slice	expressions	similarly	return	null	if	the	array	itself	or	the	subscript	expression	is	
null.	However,	in	other	cases	(e.g.	selecting	an	array	slice	that	is	completely	out	of	the	
bounds	of	the	current	array),	the	slice	expression	outputs	an	empty	(zero-dimensional)	
array	instead	of	null.	If	the	requested	slice	partially	overlaps	the	array	bounds,	it	is	reduced	
to	an	overlap	region	instead	of	returning	null.	

The	current	dimensions	of	array	values	can	be	retrieved	using	array_dims	function.	

SELECT array_dims(schedule) FROM sal_emp WHERE name = 'Carol';	
	
 array_dims	

 [1:2][1:2]	
(1 row)	

array_dims	produces	a	text	result,	which	is	more	readable	to	humans,	but	inconvenient	to	
the	program.	Dimensions	can	also	be	retrieved	using	array_upper	and	array_lower,	which	
return	the	upper	and	lower	bounds	of	the	specified	array	dimension,	respectively.	

SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = 'Carol';	
	
 array_upper	

 2	
(1 row)	

array_length	returns	the	length	of	the	specified	array	dimension.	

SELECT array_length(schedule, 1) FROM sal_emp WHERE name = 'Carol';	
	
 array_length	

 2	
(1 row)	

cardinality	returns	the	total	number	of	elements	in	an	array	of	all	dimensions;	it	is	actually	
the	number	of	rows	generated	by	the	call	on	unnest.	

SELECT cardinality(schedule) FROM sal_emp WHERE name = 'Carol';	
	
 cardinality	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 4	
(1 row)	

Modifying Arrays

You	may	update	the	array	value	as	a	whole;	

UPDATE sal_emp SET pay_by_quarter = '{25000,25000,27000,27000}'	
 WHERE name = 'Carol';	

or	use	ARRAY	expression	syntax.	

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]	
 WHERE name = 'Carol';	

An	array	can	update	a	single	element;	

UPDATE sal_emp SET pay_by_quarter[4] = 15000	
 WHERE name = 'Bill';	

or	update	it	only	partially.	

UPDATE sal_emp SET pay_by_quarter[1:2] = '{27000,27000}'	
 WHERE name = 'Carol';	

The	omitted	lower-bound	or	upper-bound	slice	syntax	can	be	used	only	when	updating	
NULL	or	nonzero	array	values.	

The	stored	array	value	can	be	expanded	by	assigning	it	to	an	element	that	does	not	yet	exist.	
The	position	between	the	previously	existing	element	and	the	newly	allocated	element	is	
filled	with	null.	For	example,	if	the	array	myarray	currently	has	4	elements,	it	will	have	6	
elements	after	an	update	of	assigning	to	myarray	[6].	myarray	[5]	contains	null.	Currently,	
the	expansion	in	this	manner	is	only	allowed	for	one-dimensional	arrays	(not	
multidimensional	arrays).	Subscripted	assignments	allow	you	to	create	arrays	whose	
subscripts	do	not	start	at	one	(1).	For	example,	to	create	an	array	with	subscript	values	-2	
through	7,	you	may	assign	it	to	myarray	[-2:7].	

The	new	array	value	can	also	be	created	using	the	concatenation	operator	||.	

SELECT ARRAY[1,2] || ARRAY[3,4] as array;	
 array	

 {1,2,3,4}	
(1 row)	
	
SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]] as array;	
 array	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 {{5,6},{1,2},{3,4}}	
(1 row)	

The	concatenation	operator	lets	you	push	a	single	element	into	the	beginning	or	end	of	a	
one-dimensional	array.	It	accommodates	two	N-dimensional	arrays	(or	N-dimensional	and	
N+1-dimensional	arrays).	

If	you	push	a	single	element	to	the	beginning	or	end	of	a	one-dimensional	array	as	shown	in	
the	following	example,	the	result	is	an	array	filled	with	the	same	lower	bound	subscript	as	
the	array	operand.	

SELECT array_dims(1 || '[0:1]={2,3}'::int[]);	
 array_dims	

 [0:2]	
(1 row)	
	
SELECT array_dims(ARRAY[1,2] || 3);	
 array_dims	

 [1:3]	
(1 row)	

When	concatenating	two	arrays	having	the	same	number	of	dimensions,	the	result	holds	
the	lower	bound	of	the	outer	dimension	of	the	left	operand.	The	result	is	that	all	the	
elements	of	the	right	operand	are	followed	by	an	array	of	all	the	elements	of	the	left	
operand,	as	the	following	example	shows:	

SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);	
 array_dims	

 [1:5]	
(1 row)	
	
SELECT array_dims(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]]);	
 array_dims	

 [1:5][1:2]	
(1 row)	

If	you	push	an	N-dimensional	array	from	the	beginning	to	the	end	of	an	N+1-dimensional	
array,	the	result	is	similar	to	the	element	array	example	above.	Each	N-dimensional	
subarray	is	essentially	an	element	of	the	outer	dimension	of	the	N+1-dimensional	array,	as	
shown	in	the	following	example:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

SELECT array_dims(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);	
 array_dims	

 [1:3][1:2]	
(1 row)	

You	can	also	create	functions	using	the	functions	array_prepend,	array_append,	or	
array_cat;	while	the	first	two	only	support	one-dimensional	arrays,	array_cat	supports	
multidimensional	arrays.	The	concatenation	operator	discussed	above	prefers	the	direct	
use	of	these	functions.	In	effect,	these	functions	exist	primarily	for	use	when	implementing	
a	concatenation	operator.	However,	they	can	also	be	useful	when	creating	user-defined	
aggregates.	For	example:	

SELECT array_prepend(1, ARRAY[2,3]);	
 array_prepend	

 {1,2,3}	
(1 row)	
	
SELECT array_append(ARRAY[1,2], 3);	
 array_append	

 {1,2,3}	
(1 row)	
	
SELECT array_cat(ARRAY[1,2], ARRAY[3,4]);	
 array_cat	

 {1,2,3,4}	
(1 row)	
	
SELECT array_cat(ARRAY[[1,2],[3,4]], ARRAY[5,6]);	
 array_cat	

 {{1,2},{3,4},{5,6}}	
(1 row)	
	
SELECT array_cat(ARRAY[5,6], ARRAY[[1,2],[3,4]]);	
 array_cat	

 {{5,6},{1,2},{3,4}}	

In	a	simple	case,	the	concatenation	operator	described	above	is	preferred	over	using	these	
functions	directly.	However,	using	one	of	these	functions	may	help	avoid	ambiguity,	since	
the	concatenation	operator	is	overloaded	to	process	all	three	cases.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

SELECT ARRAY[1, 2] || '{3, 4}' as array; -- the untyped literal is taken as
an array	
 array	

 {1,2,3,4}	
	
SELECT ARRAY[1, 2] || '7'; -- so is this one	
ERROR: malformed array literal: "7"	
	
SELECT ARRAY[1, 2] || NULL as array; -- so is an undecorated NULL	
 array	

 {1,2}	
(1 row)	
	
SELECT array_append(ARRAY[1, 2], NULL); -- this might have been meant	
 array_append	

 {1,2,NULL}	

In	the	above	example,	parser	sees	an	integer	array	on	one	side	of	the	concatenation	
operator,	and	a	constant	of	indeterminate	type	on	the	other.	An	empirical	method	used	to	
analyze	the	constant	type	is	to	assume	it	is	the	same	type	as	the	other	inputs	of	the	
operator	(in	this	case,	an	integer	array).	So	the	concatenation	operator	is	considered	
array_cat,	not	array_append.	If	that	is	a	wrong	choice,	you	can	modify	the	constant	by	
casting	it	to	an	element	type	of	the	array.	Using	array_append	can	be	a	desirable	solution.	

Searching in Arrays

To	retrieve	the	value	of	an	array,	you	should	check	each	value;	you	may	do	this	if	you	know	
the	size	of	the	array.	For	example:	

SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR	
 pay_by_quarter[2] = 10000 OR	
 pay_by_quarter[3] = 10000 OR	
 pay_by_quarter[4] = 10000;	

However,	in	large	arrays,	it	quickly	gets	bored	and	is	not	helpful	when	the	array	size	is	
unknown.	The	above	query	can	be	replaced	by:	

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);	

You	can	also	find	all	the	rows	with	an	array	value	equal	to	10000:	

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Alternatively,	you	can	use	the	generate_subscripts	function.	

SELECT * FROM	
 (SELECT pay_by_quarter,	
 generate_subscripts(pay_by_quarter, 1) AS s	
 FROM sal_emp) AS foo	
 WHERE pay_by_quarter[s] = 10000;	

It	is	also	possible	to	search	for	an	array	using	&&	operator,	which	checks	whether	the	left	
operand	overlaps	with	the	right	operand.	

SELECT * FROM sal_emp WHERE pay_by_quarter && ARRAY[10000];	

You	can	also	use	array_position	and	array_positions	functions	to	retrieve	a	specific	value	in	
an	array.	The	former	returns	the	subscript	of	the	first	value	in	the	array,	and	the	latter	
returns	an	array	with	all	the	subscripts	of	the	values	in	the	array.	

SELECT array_position(ARRAY['sun','mon','tue','wed','thu','fri','sat'], 'mon
');	
 array_positions	

 2	
	
SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);	
 array_positions	

 {1,4,8}	

Array Input and Output Syntax

The	external	text	expression	of	an	array	value	consists	of	the	I/O	conversion	rules	for	the	
array	element	type	and	the	items	that	are	interpreted	according	to	the	decoration	denoting	
the	array	structure.	Decoration	consists	of	braces	at	both	ends	of	the	value	of	an	array	and	
delimiters	between	adjacent	items.	The	delimiters	are	usually	commas	(,),	but	can	be	
something	else.	It	is	determined	by	the	typedelim	setting	for	the	element	type	of	the	array.	
All	of	the	standard	data	types	use	commas,	except	for	type	box	that	uses	semicolons	(;).	In	a	
multidimensional	array,	each	dimension	(row,	plane,	cube,	etc.)	has	its	own	level	of	braces	
and	delimiters	must	be	used	between	adjacent	levels	of	brace	entities.	

Array	output	routines	use	double	quotes	around	element	values	if	they	are	empty	strings,	
contain	braces,	delimiters,	double	quotes,	backslashes,	or	whitespace,	or	match	the	word	
NULL.	Double	quotes	and	backslashes	embedded	in	element	values	are	escaped	by	a	
backslash.	In	the	case	of	numeric	data	types,	it	is	safe	to	assume	that	double	quotes	never	
appear.	However,	for	text	data	types	you	must	cope	with	presence	or	absence	of	quotation	
marks.	By	default,	the	lower	bound	index	value	is	set	to	1	in	the	dimension	of	the	array.	If	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

you	specify	an	array	using	another	lower	bound,	the	range	of	array	subscripts	can	be	
explicitly	specified	before	creating	the	array	content.	This	type	of	decoration	consists	of	
brackets	([])	before	and	after	the	lower/upper	limits	of	each	array	dimension	and	colons	(:)	
as	space	separator	s.	An	array	dimension	decoration	is	followed	by	an	equal	sign	(=).	

SELECT f1[1][-2][3] AS e1, f1[1][-1][5] AS e2	
 FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}'::int[] AS f1) AS ss;	
	
 e1 | e2	
----+----	
 1 | 6	
(1 row)	

The	array	output	routine	includes	an	explicit	dimension	in	the	result	only	if	there	is	more	
than	one	lower	bound.	

If	the	value	created	for	an	element	is	NULL	(in	the	case	of	variation),	the	element	is	
considered	to	be	NULL.	Presence	of	quotes	or	backslashes	disables	this	and	allows	input	of	
the	literal	string	value	"NULL."	You	may	also	set	the	array_nulls	configuration	parameter	to	
off	to	prevent	NULL	from	being	recognized	as	NULL.	As	indicated	earlier,	you	can	use	
double	quotes	around	individual	array	elements	when	creating	array	values.	This	should	be	
done	in	the	case	where	the	element	values	can	be	confused	by	the	array	value	parser.	For	
example,	elements	that	contain	braces,	commas	(or	data	type	separators),	double	quotes,	
backslashes,	and	leading	or	trailing	whitespace	must	use	double	quotes.	Empty	strings	and	
strings	that	match	NULL	must	also	be	quoted.	To	add	double	quotes	or	backslashes	into	the	
quoted	array	element	values,	use	an	escape	string	syntax	and	precede	it	with	a	backslash.	
You	may	also	use	backslash	escaping	to	avoid	quotation	marks	and	protect	all	data	
characters	that	might	be	processed	incorrectly	as	array	syntax.	

You	may	add	a	space	before	the	left	brace	or	after	the	right	brace.	You	can	also	add	a	space	
before	or	after	the	individual	item	string.	Spaces	are	ignored	in	all	these	cases.	Whitespaces	
within	double-quote	elements	and	spaces	at	both	ends	of	non-whitespace	characters	in	
elements	are	ignored.	

Range Types

The	range	type	is	a	data	type	that	represents	the	range	of	values	of	some	element	type.	For	
example,	the	range	of	timestamps	can	be	used	to	indicate	the	reserved	time	range	of	a	
meeting	room.	In	this	case,	the	data	type	is	tsrange	(short	for	"timestamp	range")	and	
timestamp	is	subtype.	The	subtype	must	have	a	total	order	so	that	whether	the	element	
value	is	within,	before,	or	after	the	value	range	can	be	well-defined.	

The	range	types	are	useful	in	that	they	can	represent	multiple	element	values	as	a	single	
range	value	and	clearly	express	concepts	like	the	overlap	range.	One	of	the	most	obvious	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

examples	is	to	use	time	and	date	ranges	for	scheduling.	These	types	can	also	be	useful	for	
price	ranges,	measuring	ranges	of	instruments,	etc.	

Built-in Range Types

The	following	built-in	range	types	are	provided:	

int4range	-	Range	of	integer	

int8range	-	Range	of	bigint	

numrange	-	Range	of	numeric	

tsrange	-	Range	of	timestamp	without	time	zone	

tstzrange	-	Range	of	timestamp	with	time	zone	

daterange	-	Range	of	date	

You	can	also	define	your	own	range	types.	See	User-defined	Type	for	more	information.	

Examples

CREATE TABLE reservation (room int, during tsrange);	
INSERT INTO reservation VALUES	
 (1108, '[2010-01-01 14:30, 2010-01-01 15:30)');	
	
-- Containment	
SELECT int4range(10, 20) @> 3;	
	
-- Overlaps	
SELECT numrange(11.1, 22.2) && numrange(20.0, 30.0);	
	
-- Extract the upper bound	
SELECT upper(int8range(15, 25));	
	
-- Compute the intersection	
SELECT int4range(10, 20) * int4range(15, 25);	
	
-- Is the range empty?	
SELECT isempty(numrange(1, 5));	

Inclusive and Exclusive Bounds

All	non-empty	ranges	have	two	bounds,	a	lower	bound	and	an	upper	bound.	All	points	
between	these	values	are	included	in	the	range.	Inclusive	bounds	mean	that	the	boundary	
points	themselves	are	included	in	the	range,	and	exclusive	bounds	mean	that	the	boundary	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

points	are	not	included	in	the	range.	In	the	text	form	of	the	range,	the	inclusive	lower	
bound	is	expressed	as	"["	and	the	exclusive	lower	bound	is	expressed	as	"(."	Similarly,	the	
inclusive	upper	bound	is	expressed	as	"]",	and	the	exclusive	upper	bound	is	expressed	as	
")."	

The	functions	lower_inc	and	upper_inc	test	the	lower	and	upper	bounds	of	the	range	value,	
respectively.	

Infinite (Unbounded) Ranges

The	lower	bound	of	the	range	can	be	omitted,	meaning	that	all	points	below	the	upper	
bound	are	included	in	the	range.	Likewise,	if	the	upper	bound	of	the	range	is	omitted,	all	
points	above	the	lower	bound	are	included	in	the	range.	If	both	the	lower	and	upper	
bounds	are	omitted,	all	values	of	the	element	type	are	considered	to	be	included	in	the	
range.	

This	corresponds	to	considering	that	the	lower	bound	is	"negative	infinity"	or	the	upper	
bound	is	"positive	infinity."	Note,	however,	that	this	infinite	value	is	never	a	value	of	the	
element	type	of	the	range,	and	cannot	be	part	of	the	range.	(Therefore,	there	is	no	such	
thing	as	inclusive	infinite	bounds;	when	you	try	to	create	one,	it	is	automatically	converted	
to	an	exclusive	bound).	

It	is	true	that	some	element	types	have	an	"infinite"	notation,	but	it	is	another	different	
value	in	relation	to	the	range	type	mechanism.	For	example,	in	the	timestamp	range,	[today,]	
is	the	same	as	[today,).	However,	[today,	infinity]	can	be	sometimes	different	from	[today,	
infinity).	The	latter	excludes	the	special	timestamp	value	infinity.	

The	functions	lower_inf	and	upper_inf	test	infinite	lower/upper	bounds	of	each	range,	
respectively.	

Range Input/Output

The	input	for	the	range	value	should	follow	one	of	the	following	patterns:	

(lower-bound,upper-bound)	
(lower-bound,upper-bound]	
[lower-bound,upper-bound)	
[lower-bound,upper-bound]	
empty	

The	parentheses	or	square	brackets	indicate	whether	the	lower	and	upper	bounds	are	
excluded	or	included	as	described	above.	The	last	pattern	is	empty,	indicating	an	empty	
range	(a	range	with	no	points).	The	lower-bound	can	be	a	string	that	is	a	valid	input	to	a	
subtype,	or	can	be	left	empty	if	there	is	no	lower	bound.	Similarly,	upper-bound	can	be	a	
string	that	is	a	valid	input	to	a	subtype,	or	can	be	left	empty	if	there	is	no	upper	bound.	Each	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

boundary	value	can	be	quoted	using	"(double	quote)	characters;	this	is	a	must	since,	if	the	
boundary	value	contains	parentheses,	square	brackets,	commas,	double	quotes,	or	
backslashes,	these	characters	may	be	mistaken	for	part	of	the	range	syntax.	To	insert	
double	quotes	or	backslashes	to	quoted	boundary	values,	you	must	precede	them	with	a	
backslash.	(Double	quotation	pairs	within	boundary	values	in	double	quotes	are	also	
processed	as	double	quotation	marks,	similar	to	the	rules	for	single	quotation	marks	in	SQL	
literal	strings.)	To	protect	all	data	characters	that	might	be	processed	incorrectly	with	the	
range	syntax,	you	may	avoid	quoting	and	use	backslash	escaping.	In	addition,	when	
creating	a	boundary	value	that	is	an	empty	string,	you	should	write	"";	if	you	do	not	enter	
anything,	it	will	mean	infinite	boundary.	Whitespaces	are	allowed	before	and	after	the	
range	values,	but	spaces	between	parentheses	or	square	brackets	are	considered	to	be	part	
of	the	lower	or	upper	bound	value.	(It	may	or	may	not	be	important	depending	on	the	
element	type).	

Examples:	

-- includes 3, does not include 7, and does include all points in between	
SELECT '[3,7)'::int4range;	
	
-- does not include either 3 or 7, but includes all points in between	
SELECT '(3,7)'::int4range;	
	
-- includes only the single point 4	
SELECT '[4,4]'::int4range;	
	
-- includes no points (and will be normalized to 'empty')	
SELECT '[4,4)'::int4range;	

Constructing Ranges

Each	range	type	has	a	constructor	function	with	the	same	name	as	the	range	type.	Using	a	
constructor	function	is	more	convenient	than	writing	a	range	literal	constant,	because	you	
do	not	need	to	quote	additional	boundary	values.	A	constructor	function	accepts	two	or	
three	arguments.	While	the	three-argument	form	creates	a	range	from	the	third	argument	
to	the	boundary	of	the	form	specified,	the	two-argument	form	creates	a	range	of	standard	
forms	(lower	bound,	excluding	upper	bound).	The	third	argument	must	be	one	of	the	
followings	strings:	"()",	"(]",	"[]"	or	"[]"	

Examples:	

-- The full form is: lower bound, upper bound, and text argument indicating	
-- inclusivity/exclusivity of bounds.	
SELECT numrange(1.0, 14.0, '(]');	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

-- If the third argument is omitted, '[)' is assumed.	
SELECT numrange(1.0, 14.0);	
	
-- Although '(]' is specified here, on display the value will be converted to	
-- canonical form, since int8range is a discrete range type (see below).	
SELECT int8range(1, 14, '(]');	
	
-- Using NULL for either bound causes the range to be unbounded on that side.	
SELECT numrange(NULL, 2.2);	

Discrete Range Types

The	discrete	range	is	a	well-defined	"step-by-step"	type	of	which	element	type	is	integer	or	
date.	In	this	type,	if	there	is	no	valid	value	between	two	elements,	they	can	be	said	to	be	
adjacent.	In	contrast	to	the	continuous	range,	this	is	always	(or	almost	always)	possible	to	
recognize	different	element	values	between	the	two	given	values.	For	example,	a	range	
beyond	the	numeric	type,	like	the	range	beyond	timestamp,	is	continuous.	(timestamp	can	
be	processed	discretely	in	theory	because	of	its	precision	limitations,	but	it	is	better	to	
regard	it	as	a	sequence	when	the	size	of	the	step	is	not	of	interest.)	Another	way	to	think	
about	the	discrete	range	type	is	to	have	a	clear	idea	of	the	"next"	or	"previous"	value	for	
each	element	value.	It	should	be	noted	that,	by	selecting	the	next	or	previous	element	value	
rather	than	the	given	original,	it	is	possible	to	convert	between	expressions	including	the	
boundaries	of	the	ranges	and	expressions	excluding	the	boundaries	of	the	ranges.	For	
example,	integer	range	types	[4,8]	and	(3,9)	denote	the	same	set	of	values.	This	is	not	the	
case,	however,	for	numerical	ranges.	The	discrete	range	type	must	have	a	canonicalization	
function	that	recognizes	the	desired	step	size	for	the	element	type.	The	canonicalization	
function	is	especially	responsible	for	converting	the	values	equally	to	the	range	types	that	
have	an	identity	representation	of	a	consistent	inclusion	or	exclusion	range.	Unless	a	
canonicalization	function	is	specified,	the	ranges	of	different	types	are	always	processed	as	
non-equivalence,	even	though	they	actually	denote	the	same	set	of	values.	The	built-in	
range	types,	int4range,	int8range,	and	daterange,	use	the	canonical	form,	which	includes	
the	lower	bound	and	excludes	the	upper	bound	(i.e."[)").	User	defined	range	types	may	use	
other	notations.	

Defining New Range Types

You	may	define	your	own	range	type.	The	most	common	reason	for	doing	this	is	to	use	a	
subtype	range	that	is	not	provided	as	a	built-in	range	type.	This	is	an	example	of	defining	a	
new	range	type	for	the	subtype	float8.	

CREATE TYPE floatrange AS RANGE (
 subtype = float8,	
 subtype_diff = float8mi	
);	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	
SELECT '[1.234, 5.678]'::floatrange;	

Since	float8	is	not	a	meaningful	"step",	we	do	not	define	a	canonicalization	function	in	this	
example.	If	the	subtype	has	a	discrete	value	rather	than	a	continuous	value,	CREATE	TYPE	
command	must	specify	a	canonical	function.	The	canonicalization	function	must	take	an	
input	range	value	and	return	an	equivalent	range	value	that	may	be	different	from	the	
boundary	type.	The	canonical	outputs	of	the	two	ranges	representing	the	same	set	of	values	
(e.g.	integer	range	[1,	7]	and	[1,	8))	should	be	the	same.	It	does	not	matter	which	
expression	is	chosen	to	be	canonical,	as	long	as	two	equivalent	values	of	the	same	type	are	
always	mapped	to	the	same	value	of	the	same	type.	Besides	controlling	inclusive/exclusive	
bounds	format,	the	canonicalization	function	can	process	boundary	values	well	if	the	
desired	step	size	is	greater	than	the	subtype's	storable	size.	For	example,	the	step	size	of	a	
range	type	beyond	timestamp	can	be	defined	as	time.	On	this	occasion,	the	canonicalization	
function	may	require	rounding-off	if	it	is	not	a	multiple	of	the	time,	or	an	error	may	occur	
instead.	If	you	define	your	own	range	type,	you	may	specify	different	subtype	B-tree	
operator	classes	or	collations	to	use	in	order	to	change	the	sort	order	that	determines	
which	values	belong	to	a	given	range.	In	addition,	a	range	type	to	be	used	in	a	GiST	or	SP-
GiST	index	should	define	a	subtype	difference	or	subtype_diff,	a	function(An	index	works	
without	subtype_diff,	but	is	much	less	efficient	when	a	difference	function	is	provided).	The	
subtype	difference	function	takes	two	input	values	of	a	subtype	and	returns	the	difference	
expressed	as	a	float8	value	(e.g.	X	minus	Y).	In	the	above	example,	you	may	use	a	function	
that	underlies	the	normal	float8	subtraction	operator,	but	for	other	subtypes,	type	
conversions	may	be	required.	Several	creative	ideas	about	how	to	represent	differences	in	
numbers	may	be	needed.	To	the	greatest	range	possible,	the	subtype_diff	function	must	
agree	on	the	sort	order	implied	by	the	selected	operator	class	es	and	collations.	That	is,	the	
result	of	this	should	always	be	a	positive	value	when	the	first	argument	is	greater	than	the	
second	argument	according	to	the	sort	order.	

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS	
'SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT IMMUTABLE;	
	
CREATE TYPE timerange AS RANGE (
 subtype = time,	
 subtype_diff = time_subtype_diff	
);	
	
SELECT '[11:10, 23:00]'::timerange;	

For	more	information	on	creating	range	types,	see	User-defined	Type.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Indexing

GiST	and	SP-GiST	indexes	are	able	to	generate	table	columns	of	range	type.	The	following	is	
an	example	of	creating	a	GiST	index.	

CREATE INDEX reservation_idx ON reservation USING GIST (during);	

GiST	or	SP-GiST	indexes	can	speed	up	queries	involving	range	operators	such	as	=,	&&,	<@,	
@>,	<<,	>>,	-|-,	&<,	and	&>.	

B-tree	and	hash	indexes	may	create	table	columns	of	range	type	as	well.	For	these	index	
types,	the	only	useful	range	operation	is	basically	"=".	Even	if	there	is	a	B-tree	sort	order	
that	uses	"<"	and	">"	operators	and	is	defined	for	range	values,	the	order	itself	is	arbitrary	
and	not	very	useful	in	the	real	world.	The	B-tree	and	hash	support	for	range	types	is	
intended	primarily	to	allow	sorting	and	hashing	inside	queries	rather	than	creating	actual	
indexes.	

Constraints on Ranges

UNIQUE	is	a	natural	constraint	on	scalar	values.	However,	it	is	appropriate	not	for	range	
types	but	for	exclusion	constraints,	mainly.	An	exclusion	constraint	allows	the	specification	
of	constraints	such	as	"nonoverlap"	in	range	types.	

Examples:	

CREATE TABLE reservation (
 during tsrange,	
 EXCLUDE USING GIST (during WITH &&)	
);	

The	constraint	prevents	overlapping	values	from	being	simultaneously	present	in	the	table.	

INSERT INTO reservation VALUES	
 ('[2010-01-01 11:30, 2010-01-01 15:00)');	
INSERT 0 1	
	
INSERT INTO reservation VALUES	
 ('[2010-01-01 14:45, 2010-01-01 15:45)');	
ERROR: conflicting key value violates exclusion constraint "reservation_duri
ng_excl"	
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflic
ts	
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00")).	

You	can	use	the	btree_gist	extension	to	define	an	exclusion	constraint	on	a	regular	scalar	
data	type,	which	makes	it	possible	to	exclude/combine	the	range	with	the	maximum	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

flexibility.	For	instance,	after	btree_gist	is	installed,	the	following	constraint	rejects	
overlapping	ranges	only	when	the	number	of	meeting	rooms	is	equal.	

CREATE EXTENSION btree_gist;	
CREATE TABLE room_reservation (
 room text,	
 during tsrange,	
 EXCLUDE USING GIST (room WITH =, during WITH &&)	
);	
	
INSERT INTO room_reservation VALUES	
 ('123A', '[2010-01-01 14:00, 2010-01-01 15:00)');	
INSERT 0 1	
	
INSERT INTO room_reservation VALUES	
 ('123A', '[2010-01-01 14:30, 2010-01-01 15:30)');	
ERROR: conflicting key value violates exclusion constraint "room_reservation
_room_during_excl"	
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:0
0")) conflicts	
with existing key (room, during)=(123A, ["2010-01-01 14:00:00","2010-01-01 15:
00:00")).	
	
INSERT INTO room_reservation VALUES	
 ('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');	
INSERT 0 1	

User-defined Type

You	can	add	a	new	type	using	CREATE	TYPE	command.	There	are	five	types	of	CREATE	
TYPE:	Composite	Type,	Enum	Type,	Range	Type,	Base	Type,	and	Shell	Type.	

Syntex	:	

CREATE TYPE name AS	
 ([attribute_name data_type [COLLATE collation] [, ...]])	
	
CREATE TYPE name AS ENUM	
 (['label' [, ...]])	
	
CREATE TYPE name AS RANGE (
 SUBTYPE = subtype	
 [, SUBTYPE_OPCLASS = subtype_operator_class]	
 [, COLLATION = collation]	
 [, CANONICAL = canonical_function]	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 [, SUBTYPE_DIFF = subtype_diff_function]	
)	
	
CREATE TYPE name (
 INPUT = input_function,	
 OUTPUT = output_function	
 [, RECEIVE = receive_function]	
 [, SEND = send_function]	
 [, TYPMOD_IN = type_modifier_input_function]	
 [, TYPMOD_OUT = type_modifier_output_function]	
 [, ANALYZE = analyze_function]	
 [, INTERNALLENGTH = { internallength | VARIABLE }]	
 [, PASSEDBYVALUE]	
 [, ALIGNMENT = alignment]	
 [, STORAGE = storage]	
 [, LIKE = like_type]	
 [, CATEGORY = category]	
 [, PREFERRED = preferred]	
 [, DEFAULT = default]	
 [, ELEMENT = element]	
 [, DELIMITER = delimiter]	
 [, COLLATABLE = collatable]	
)	
	
CREATE TYPE name	

Examples	:	

This	is	an	example	of	creating	a	composite	type	and	using	it	for	function	definition.	

CREATE TYPE compfoo AS (f1 int, f2 text);	
	
CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$	
 SELECT fooid, fooname FROM foo	
$$ LANGUAGE SQL;	

This	is	an	example	of	creating	an	enum	type	and	using	it	for	table	definition.	

CREATE TYPE bug_status AS ENUM ('new', 'open', 'closed');	
	
CREATE TABLE bug (
 id serial,	
 description text,	
 status bug_status	
);	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

This	is	an	example	of	creating	a	range	type.	

CREATE TYPE float8_range AS RANGE (subtype = float8, subtype_diff = float8mi);	

This	is	an	example	of	creating	a	base	type	and	then	using	it	for	table	definition.	

CREATE TYPE box;	
	
CREATE FUNCTION my_box_in_function(cstring) RETURNS box AS ... ;	
CREATE FUNCTION my_box_out_function(box) RETURNS cstring AS ... ;	
	
CREATE TYPE box (
 INTERNALLENGTH = 16,	
 INPUT = my_box_in_function,	
 OUTPUT = my_box_out_function	
);	
	
CREATE TABLE myboxes (
 id integer,	
 description box	
);	

functions

Comparison functions

• num_nonnulls(VARIADIC	"any")	
Returns	the	number	of	non-null	arguments.	

	 SELECT num_nonnulls(1, NULL, 2);	
	
Result:	
num_nonnulls	

 2	
 (1 row)	

• num_nulls(VARIADIC	"any")	
Returns	the	number	of	null	arguments.	

	 SELECT num_nulls(1, NULL, 2);	
	
Result:	
num_nonnulls	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 1	
 (1 row)	

Mathematics functions

It	provides	various	functions	related	to	numbers,	and	the	argument	specified	as	dp	
indicates	double	precision.	

• abs(x)	
Returns	absolute	value	of	the	argument.	

	 SELECT abs(-17.4);	
	
Result:	
 abs	

17.4	
(1 row)	

• cbrt(dp)	
Returns	cube	root	of	the	argument.	

	 SELECT cbrt(27.0);	
	
Result:	
 cbrt	

 3	
(1 row)	

• ceil(dp	or	numeric)	or	ceiling(dp	or	numeric)	
Returns	nearest	integer	greater	than	or	equal	to	argument.	

	 SELECT ceil(-42.8);	
	
Result:	
 ceil	

 -42	
(1 row)	

• degrees(dp)	
Converts	radians	to	degrees.	

	 SELECT degrees(0.5);	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result:	
 degrees 	

 28.6478897565412	
 (1 row)	

• div(y	numeric,	x	numeric)	
Returns	integer	quotient	of	y/x.	

	 SELECT div(9,4);	
	
Result:	
 div	

 2	
(1 row)	

• exp(dp	or	numeric)	
Returns	exponential.	

	 SELECT exp(1.0);	
	
Result:	
 exp 	

 2.7182818284590452	
 (1 row)	

• floor(dp	or	numeric)	
Returns	nearest	integer	less	than	or	equal	to	the	argument.	

	 SELECT floor(-42.8);	
	
Result:	
 floor	

 -43	
(1 row)	

• ln(dp	or	numeric)	
Returns	natural	logarithm	of	the	argument.	

	 SELECT ln(2.0);	
	
Result:	
 ln	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 0.693147180559945	
 (1 row)	

• log(dp	or	numeric)	
Returns	base	10	logarithm.	

	 SELECT log(100.0);	
	
Result:	
 log	

 2.0000000000000000	
 (1 row)	

• log(b	numeric,	x	numeric)	
Returns	logarithm	to	base	b.	

	 SELECT log(2.0, 64.0);	
	
Result:	
 log	

 6.0000000000000000	
 (1 row)	

• mod(y,	x)	
Returns	remainder	of	y/x.	

	 SELECT mod(9,4);	
	
Result:	
 mod	

 1	
(1 row)	

• pi()	
Returns	“π”	constant.	

	 SELECT pi();	
	
Result:	
 pi	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 3.14159265358979	
 (1 row)	

• power(a	dp,	b	dp)	or	power(a	numeric,	b	numeric)	
Returns	a	raised	to	the	power	of	b.	

	 SELECT power(9.0, 3.0);	
	
Result:	
 power	

 729.00000000000000	
 (1 row)	

• radians(dp)	
Converts	degrees	to	radians.	

	 SELECT radians(45.0);	
	
Result:	
 radians 	

 0.785398163397448	
 (1 row)	

• round(dp	or	numeric)	
Rounds	to	nearest	integer.	

	 SELECT round(42.4);	
	
Result:	
 round	

 42	
(1 row)	

• round(v	numeric,	s	int)	
Rounds	to	s	decimal	places	of	v	argument.	

	 SELECT round(42.4382, 2);	
	
Result:	
 round	

 42.44	
(1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• scale(numeric)	
Returns	scale	of	the	argument.	

	 SELECT scale(8.41);	
	
Result:	
 scale	

 2	
(1 row)	

• sign(dp	or	numeric)	
Returns	the	sign	(-1,	0,	1)	of	the	argument.	

	 SELECT sign(-8.4);	
	
Result:	
 sign	

 -1	
(1 row)	

• sqrt(dp	or	numeric)	
Returns	square	root	of	the	argument.	

	 SELECT sqrt(2.0);	
	
Result:	
 sqrt	

 1.414213562373095	
 (1 row)	

• trunc(dp	or	numeric)	
Truncates	toward	zero.	

	 SELECT trunc(42.8);	
	
Result:	
 trunc	

 42	
(1 row)	

• trunc(v	numeric,	s	int)	
Truncates	to	s	decimal	places.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT trunc(42.4382, 2);	
	
Result:	
 trunc	

 42.43	
(1 row)	

• width_bucket(operand	dp,	b1	dp,	b2	dp,	count	int)	or	width_bucket(operand	numeric,	
b1	numeric,	b2	numeric,	count	int)	
Returns	the	bucket	number	to	which	operand	would	be	assigned	in	a	histogram	having	
count	equal-width	buckets	spanning	the	range	b1	to	b2;	returns	0	or	count+1	for	an	
input	outside	the	range.	

	 SELECT width_bucket(5.35, 0.024, 10.06, 5);	
	
Result:	
 width_bucket	

 3	
 (1 row)	

• width_bucket(operand	anyelement,	thresholds	anyarray)	
Returns	the	bucket	number	to	which	operand	would	be	assigned	given	an	array	listing	
the	lower	bounds	of	the	buckets;	returns	0	for	an	input	less	than	the	first	lower	bound;	
the	thresholds	array	must	be	sorted,	smallest	first.	

	 SELECT width_bucket(now(), array['yesterday', 'today', 'tomorrow']::times
tamptz[]);	
	
Result:	
 width_bucket	

 2	
 (1 row)	

String functions

• ascii(string)	
ASCII	code	of	the	first	character	of	the	argument.	For	UTF8	returns	the	Unicode	code	
point	of	the	character.	For	other	multibyte	encodings,	the	argument	must	be	an	ASCII	
character.	

	 SELECT ascii('x');	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result:	
 ascii	

 120	
(1 row)	

• btrim(string	text	[,	characters	text])	
Removes	the	longest	string	consisting	only	of	characters	in	characters	(a	space	by	
default)	from	the	start	and	end	of	string.	

	 SELECT btrim('xyxtrimyyx', 'xyz');	
	
Result:	
 btrim	

 trim	
(1 row)	

• chr(int)	
Character	with	the	given	code.	For	UTF8	the	argument	is	treated	as	a	Unicode	code	
point.	For	other	multibyte	encodings	the	argument	must	designate	an	ASCII	character.	
The	NULL	(0)	character	is	not	allowed	because	text	data	types	cannot	store	such	bytes.	

	 SELECT chr(65);	
	
Result:	
 chr	

 A	
(1 row)	

• concat(str	"any"	[,	str	"any"	[,	...]])	
Concatenates	the	text	representations	of	all	the	arguments.	NULL	arguments	are	
ignored.	

	 SELECT concat('abcde', 2, NULL, 22);	
	
Result:	
 concat	

 abcde222	
 (1 row)	

• concat_ws(sep	text,	str	"any"	[,	str	"any"	[,	...]])	
Concatenates	all	but	the	first	argument	with	separators.	The	first	argument	is	used	as	
the	separator	string.	NULL	arguments	are	ignored.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT concat_ws(',', 'abcde', 2, NULL, 22);	
	
Result:	
 concat_ws	

 abcde,2,22	
 (1 row)	

• convert(string	bytea,	src_encoding	name,	dest_encoding	name)	
Converts	string	to	dest_encoding.	The	original	encoding	is	specified	by	src_encoding.	
The	string	must	be	valid	in	this	encoding.	Conversions	can	be	defined	by	CREATE	
CONVERSION.	Also	there	are	some	predefined	conversions.	See	this	link	for	available	
conversions.	

	 SELECT convert('text_in_utf8', 'UTF8', 'LATIN1');	
	
Result:	
 convert	

 x746578745f696e5f75746638	
 (1 row)	

• convert_from(string	bytea,	src_encoding	name)	
Converts	string	to	the	database	encoding.	The	original	encoding	is	specified	by	
src_encoding.	The	string	must	be	valid	in	this	encoding.	

	 SELECT convert_from('text_in_utf8', 'UTF8');	
	
Result:	
 convert_from	

 text_in_utf8 (A string represented by the current database encoding)	
 (1 row)	

• convert_to(string	text,	dest_encoding	name)	
Converts	string	to	dest_encoding.	

	 SELECT convert_to('some text', 'UTF8');	
	
Result:	
 convert_to	

 x736f6d652074657874	
 (1 row)	

https://www.postgresql.org/docs/9.6/static/functions-string.html#CONVERSION-NAMES

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• decode(string	text,	format	text)	
Decodes	binary	data	from	textual	representation	in	string.	Options	for	format	are	same	
as	in	encode.	

	 SELECT decode('MTIzAAE=', 'base64');	
	
Result:	
 decode	

 x3132330001	
 (1 row)	

• encode(data	bytea,	format	text)	
Encode	binary	data	into	a	textual	representation.	Supported	formats	are:	base64,	hex,	
escape.	escape	converts	zero	bytes	and	high-bit-set	bytes	to	octal	sequences	(\nnn)	
and	doubles	backslashes.	

	 SELECT encode(E'123\\000\\001', 'base64');	
	
Result:	
 encode	

 MTIzAAE=	
 (1 row)	

• format(formatstr	text	[,	formatarg	"any"	[,	...]])	
Formats	arguments	according	to	a	format	string.	This	function	is	similar	to	the	C	
function	sprintf.	

	 SELECT format('Hello %s, %1$s', 'World');	
	
Result:	
 format	

 Hello World, World	
 (1 row)	

• initcap(string)	
Converts	the	first	letter	of	each	word	to	upper	case	and	the	rest	to	lower	case.	Words	
are	sequences	of	alphanumeric	characters	separated	by	non-alphanumeric	characters.	

	 SELECT initcap('hi THOMAS');	
	
Result:	
 initcap	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 Hi Thomas	
 (1 row)	

• length(string)	
Returns	the	number	of	characters	in	string.	

	 SELECT length('jose');	
	
Result:	
 length	

 4	
 (1 row)	

• length(string	bytea,	encoding	name)	
Returns	the	number	of	characters	in	string	in	the	given	encoding.	The	string	must	be	
valid	in	this	encoding.	

	 SELECT length('jose', 'UTF8');	
	
Result:	
 length	

 4	
 (1 row)	

• lpad(string	text,	length	int	[,	fill	text])	
Fills	up	the	string	to	length	length	by	prepending	the	characters	fill	(a	space	by	default).	
If	the	string	is	already	longer	than	length	then	it	is	truncated	(on	the	right).	

	 SELECT lpad('hi', 5, 'xy');	
	
Result:	
 lpad	

 xyxhi	
(1 row)	

• ltrim(string	text	[,	characters	text])	
Removes	the	longest	string	containing	only	characters	from	characters	(a	space	by	
default)	from	the	start	of	string.	

	 SELECT ltrim('zzzytest', 'xyz');	
	
Result:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 ltrim	

 test	
(1 row)	

• md5(string)	
Calculates	the	MD5	hash	of	string,	returning	the	result	in	hexadecimal.	

	 SELECT md5('abc');	
	
Result:	
 md5	

 900150983cd24fb0d6963f7d28e17f72	
 (1 row)	

• parse_ident(qualified_identifier	text	[,	strictmode	boolean	DEFAULT	true])	
Splits	qualified_identifier	into	an	array	of	identifiers,	removing	any	quoting	of	
individual	identifiers.	By	default,	extra	characters	after	the	last	identifier	are	
considered	an	error;	but	if	the	second	parameter	is	false,	then	such	extra	characters	
are	ignored.	(This	behavior	is	useful	for	parsing	names	for	objects	like	functions).	Note	
that	this	function	does	not	truncate	over-length	identifiers.	If	you	want	truncation	you	
can	cast	the	result	to	name[].	

	 SELECT parse_ident('"SomeSchema".someTable');	
	
Result:	
 parse_ident	

 {SomeSchema,sometable}	
 (1 row)	

• pg_client_encoding()	
Returns	current	client	encoding	name.	

	 SELECT pg_client_encoding();	
	
Result:	
 pg_client_encoding	

 SQL_ASCII	
 (1 row)	

• quote_ident(string	text)	
Returns	the	given	string	suitably	quoted	to	be	used	as	an	identifier	in	an	SQL	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

statement	string.	Quotes	are	added	only	if	necessary	(i.e.,	if	the	string	contains	non-
identifier	characters	or	would	be	case-folded).	Embedded	quotes	are	properly	doubled.	

	 SELECT quote_ident('Foo bar');	
	
Result:	
 quote_ident	

 "Foo bar"	
 (1 row)	

• quote_literal(string	text)	
Returns	the	given	string	suitably	quoted	to	be	used	as	a	string	literal	in	an	SQL	
statement	string.	Embedded	single-quotes	and	backslashes	are	properly	doubled.	Note	
that	quote_literal	returns	null	on	null	input;	if	the	argument	might	be	null,	
quote_nullable	is	often	more	suitable.	

	 SELECT quote_literal(E'O\'Reilly');	
	
Result:	
 quote_literal	

 'O''Reilly'	
 (1 row)	

• quote_literal(value	anyelement)	
Coerces	the	given	value	to	text	and	then	quote	it	as	a	literal.	Embedded	single-quotes	
and	backslashes	are	properly	doubled.	

	 SELECT quote_literal(42.5);	
	
Result:	
 quote_literal	

 '42.5'	
 (1 row)	

• quote_nullable(string	text)	
Returns	the	given	string	suitably	quoted	to	be	used	as	a	string	literal	in	an	statement	
string;	or,	if	the	argument	is	null,	return	NULL.	Embedded	single-quotes	and	
backslashes	are	properly	doubled.	

	 SELECT quote_nullable(NULL);	
	
Result:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 quote_nullable	

 NULL	
 (1 row)	

• quote_nullable(value	anyelement)	
Coerces	the	given	value	to	text	and	then	quote	it	as	a	literal;	or,	if	the	argument	is	null,	
return	NULL.	Embedded	single-quotes	and	backslashes	are	properly	doubled.	

	 SELECT quote_nullable(42.5);	
	
Result:	
 quote_nullable	

 '42.5'	
 (1 row)	

• regexp_matches(string	text,	pattern	text	[,	flags	text])	
Returns	captured	substring(s)	resulting	from	the	first	match	of	a	POSIX	regular	
expression	to	the	string.	

	 SELECT regexp_matches('foobarbequebaz', '(bar)(beque)');	
	
Result:	
 regexp_matches	

 {bar,beque}	
 (1 row)	

• regexp_replace(string	text,	pattern	text,	replacement	text	[,	flags	text])	
Replaces	substring(s)	matching	a	POSIX	regular	expression.	

	 SELECT regexp_replace('Thomas', '.[mN]a.', 'M');	
	
Result:	
 regexp_replace	

 ThM	
 (1 row)	

• regexp_split_to_array(string	text,	pattern	text	[,	flags	text])	
Splits	string	using	a	POSIX	regular	expression	as	the	delimiter.	

	 SELECT regexp_split_to_array('hello world', E'\\s+');	
	
Result:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 regexp_split_to_array	

 {hello,world}	
 (1 row)	

• regexp_split_to_table(string	text,	pattern	text	[,	flags	text])	
Splits	string	using	a	POSIX	regular	expression	as	the	delimiter.	

	 SELECT regexp_split_to_table('hello world', E'\\s+');	
	
Result:	
 regexp_split_to_array	

 hello	
 world	
 (2 rows)	

• repeat(string	text,	number	int)	
Repeats	string	the	specified	number	of	times.	

	 SELECT repeat('Pg', 4);	
	
Result:	
 repeat	

 PgPgPgPg	
 (1 row)	

• replace(string	text,	from	text,	to	text)	
Replaces	all	occurrences	in	string	of	substring	from	with	substring	to.	

	 SELECT replace('abcdefabcdef', 'cd', 'XX');	
	
Result:	
 replace	

 abXXefabXXef	
 (1 row)	

• reverse(str)	
Return	reversed	string.	

	 SELECT reverse('abcde');	
	
Result:	
 reverse	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 edcba	
 (1 row)	

• right(str	text,	n	int)	
Returns	last	n	characters	in	the	string.	When	n	is	negative,	it	returns	all	but	first	|n|	
characters.	

	 SELECT right('abcde', 2);	
	
Result:	
 right	

 de	
(1 row)	

• rpad(string	text,	length	int	[,	fill	text])	
Fills	up	the	string	to	length	length	by	appending	the	characters	fill	(a	space	by	default).	
If	the	string	is	already	longer	than	length	then	it	is	truncated.	

	 SELECT rpad('hi', 5, 'xy');	
	
Result:	
 rpad	

 hixyx	
(1 row)	

• rtrim(string	text	[,	characters	text])	
Removes	the	longest	string	containing	only	characters	from	characters	(a	space	by	
default)	from	the	end	of	string.	

	 SELECT rtrim('testxxzx', 'xyz');	
	
Result:	
 rtrim	

 test	
(1 row)	

• split_part(string	text,	delimiter	text,	field	int)	
Splits	string	on	delimiter	and	return	the	given	field	(counting	from	one).	

	 SELECT split_part('abc~@~def~@~ghi', '~@~', 2);	
	
Result:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 split_part	

 def	
 (1 row)	

• strpos(string,	substring)	
Location	of	specified	substring	(same	as	position	(substring	in	string),	but	note	the	
reversed	argument	order).	

	 SELECT strpos('high', 'ig');	
	
Result:	
 strpos	

 2	
 (1 row)	

• substr(string,	from	[,	count])	
Extracts	substring	(same	as	substring(string	from	from	for	count)).	

	 SELECT substr('alphabet', 3, 2);	
	
Result:	
 substr	

 ph	
 (1 row)	

• to_ascii(string	text	[,	encoding	text])	
Converts	string	to	ASCII	from	another	encoding	(only	supports	conversion	from	
LATIN1,	LATIN2,	LATIN9,	and	WIN1250	encodings).	

	 SELECT to_ascii('Karel');	
	
Result:	
 to_ascii	

 Karel	
 (1 row)	

• to_hex(number	int	or	bigint)	
Converts	number	to	its	equivalent	hexadecimal	representation.	

	 SELECT to_hex(2147483647);	
	
Result:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 to_hex	

 7fffffff	
 (1 row)	

• translate(string	text,	from	text,	to	text)	
Any	character	in	string	that	matches	a	character	in	the	from	set	is	replaced	by	the	
corresponding	character	in	the	to	set.	If	from	is	longer	than	to,	occurrences	of	the	extra	
characters	in	from	are	removed.	

	 SELECT translate('12345', '143', 'ax');	
	
Result:	
 translate	

 a2x5	
 (1 row)	

Binary String functions

Defines	some	string	functions	that	use	key	words,	rather	than	commas,	to	separate	
arguments.	

• octet_length(string)	
Returns	the	number	of	bytes	in	binary	string.	

	 SELECT octet_length(E'jo\\000se'::bytea);	
	
Result:	
 octet_length	

 5	
 (1 row)	

• overlay(string	placing	string	from	int	[for	int])	
Replaces	substring.	

	 SELECT overlay(E'Th\\000omas'::bytea placing E'\\002\\003'::bytea FROM 2
for 3);	
	
Result:	
 overlay	

 x5402036d6173	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• position(substring	in	string)	
Returns	the	location	of	specified	substring.	

	 SELECT position(E'\\000om'::bytea in E'Th\\000omas'::bytea);	
	
Result:	
 position	

 3	
 (1 row)	

• substring(string	[from	int]	[for	int])	
Extracts	substring.	

	 SELECT substring(E'Th\\000omas'::bytea FROM 2 for 3);	
	
Result:	
 substring	

 x68006f	
 (1 row)	

• trim([both]	bytes	from	string)	
Removes	the	longest	string	containing	only	bytes	appearing	in	bytes	from	the	start	and	
end	of	string.	

	 SELECT trim(E'\\000\\001'::bytea FROM E'\\000Tom\\001'::bytea);	
	
Result:	
 trim	

 x546f6d	
 (1 row)	

• btrim(string	bytea,	bytes	bytea)	
Removes	the	longest	string	containing	only	bytes	appearing	in	bytes	from	the	start	and	
end	of	string.	

	 SELECT btrim(E'\\000trim\\001'::bytea, E'\\000\\001'::bytea);	
	
Result:	
 btrim	

 x7472696d	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• decode(string	text,	format	text)	
Decodes	binary	data	from	textual	representation	in	string.	Options	for	format	are	same	
as	in	encode.	

	 SELECT decode(E'123\\000456', 'escape');	
	
Result:	
 decode	

 x31323300343536	
 (1 row)	

• encode(data	bytea,	format	text)	
Encodes	binary	data	into	a	textual	representation.	Supported	formats	are:	base64,	hex,	
escape.	escape	converts	zero	bytes	and	high-bit-set	bytes	to	octal	sequences	(\nnn)	
and	doubles	backslashes.	

	 SELECT encode(E'123\\000456'::bytea, 'escape');	
	
Result:	
 encode	

 123\000456	
 (1 row)	

• get_bit(string,	offset)	
Extracts	bit	from	string.	

	 SELECT get_bit(E'Th\\000omas'::bytea, 45);	
	
Result:	
 get_bit	

 1	
 (1 row)	

• get_byte(string,	offset)	
Extract	byte	from	string.	

	 SELECT get_byte(E'Th\\000omas'::bytea, 4);	
	
Result:	
 get_byte	

 109	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• length(string)	
Returns	the	length	of	binary	string.	

	 SELECT length(E'jo\\000se'::bytea);	
	
Result:	
 length	

 5	
 (1 row)	

• md5(string)	
Calculates	the	MD5	hash	of	string,	returning	the	result	in	hexadecimal.	

	 SELECT md5(E'Th\\000omas'::bytea);	
	
Result:	
 md5	

 8ab2d3c9689aaf18b4958c334c82d8b1	
 (1 row)	

• set_bit(string,	offset,	newvalue)	
Returns	the	set	bit	in	string.	

	 SELECT set_bit(E'Th\\000omas'::bytea, 45, 0);	
	
Result:	
 set_bit	

 x5468006f6d4173	
 (1 row)	

• set_byte(string,	offset,	newvalue)	
Returns	the	set	byte	in	string.	

	 SELECT set_byte(E'Th\\000omas'::bytea, 4, 64);	
	
Result:	
 set_byte	

 x5468006f406173	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Date Type Formatting functions

The	formatting	functions	provide	a	powerful	set	of	tools	for	converting	various	data	types	
(date/time,	integer,	floating	point,	and	numeric	to	formatted	strings	and	for	converting	
from	formatted	strings	to	specific	data	types.	These	functions	all	follow	a	common	calling	
convention:	the	first	argument	is	the	value	to	be	formatted	and	the	second	argument	is	a	
template	that	defines	the	output	or	input	format.	

• to_char(timestamp,	text)	
Converts	timestamp	to	string.	

	 SELECT to_char(current_timestamp, 'HH12:MI:SS');	
	
Result:	
 to_char	

 04:56:02	
 (1 row)	

• to_char(interval,	text)	
Converts	interval	to	string.	

	 SELECT to_char(interval '15h 2m 12s', 'HH24:MI:SS');	
	
Result:	
 to_char	

 15:02:12	
 (1 row)	

• to_char(int,	text)	
Converts	integer	to	string.	

	 SELECT to_char(125, '999');	
	
Result:	
 to_char	

 125	
 (1 row)	

• to_char(double	precision,	text)	
Converts	real/double	precision	to	string.	

	 SELECT to_char(125.8::real, '999D9');	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result:	
 to_char	

 125.8	
 (1 row)	

• to_char(numeric,	text)	
Converts	numeric	to	string.	

	 SELECT to_char(-125.8, '999D99S');	
	
Result:	
 to_char	

 125.80-	
 (1 row)	

• to_date(text,	text)	
Converts	string	to	date.	

	 SELECT to_date('05 Dec 2000', 'DD Mon YYYY');	
	
Result:	
 to_date	

 2000-12-05	
 (1 row)	

• to_number(text,	text)	
Converts	string	to	numeric.	

	 SELECT to_number('12,454.8-', '99G999D9S');	
	
Result:	
 to_number	

 -12454.8	
 (1 row)	

• to_timestamp(text,	text)	
Converts	string	to	timestamp.	

	 SELECT to_timestamp('05 Dec 2000', 'DD Mon YYYY');	
	
Result:	
 to_timestamp	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 2000-12-05 00:00:00+09	
 (1 row)	

Date/Time functions

All	the	functions	and	operators	described	below	that	take	time	or	timestamp	inputs	
actually	come	in	two	variants:	one	that	takes	time	with	time	zone	or	timestamp	with	time	
zone,	and	one	that	takes	time	without	time	zone	or	timestamp	without	time	zone.	For	
brevity,	these	variants	are	not	shown	separately.	Also,	+	and	*	operators	come	in	
commutative	pairs	(for	example	both	date	+	integer	and	integer	+	date);	we	show	only	one	
of	each	such	pair.	

• age(timestamp,	timestamp)	
Subtracts	arguments,	producing	a	result	that	uses	years	and	months,	rather	than	just	
days.	

	 SELECT age(timestamp '2001-04-10', timestamp '1957-06-13');	
	
Result:	
 age	

 43 years 9 mons 27 days	
 (1 row)	

• age(timestamp)	
Subtracts	from	current_date	(at	midnight).	

	 SELECT age(timestamp '1957-06-13');	
	
Result:	
 age	

 60 years 3 mons 15 days	
 (1 row)	

• clock_timestamp()	
Returns	current	date	and	time	(changes	during	statement	execution).	

	 SELECT clock_timestamp();	
	
Result:	
 clock_timestamp	

 2017-09-28 17:47:31.208076+09	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• current_date	
Returns	current	date.	

	 SELECT current_date;	
	
Result:	
 date	

 2017-09-28	
 (1 row)	

• current_time	
Returns	current	time	of	day.	

	 SELECT current_time;	
	
Result:	
 timetz	

 17:53:23.972231+09	
 (1 row)	

• current_timestamp	
Returns	current	date	and	time.	

	 SELECT current_timestamp;	
	
Result:	
 now	

 2017-09-28 18:01:43.890977+09	
 (1 row)	

• date_part(text,	timestamp)	
Returns	subfield	specified	in	text.	

	 SELECT date_part('hour', timestamp '2001-02-16 20:38:40');	
	
Result:	
 date_part	

 20	
 (1 row)	

• date_part(text,	interval)	
Returns	subfield	specified	in	text.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT date_part('month', interval '2 years 3 months');	
	
Result:	
 date_part	

 3	
 (1 row)	

• date_trunc(text,	timestamp)	
Truncates	to	specified	precision.	

	 SELECT date_trunc('hour', timestamp '2001-02-16 20:38:40');	
	
Result:	
 date_trunc	

 2001-02-16 20:00:00	
 (1 row)	

• date_trunc(text,	interval)	
Truncates	to	specified	precision.	

	 SELECT date_trunc('hour', interval '2 days 3 hours 40 minutes');	
	
Result:	
 date_trunc	

 2 days 03:00:00	
 (1 row)	

• extract(field	from	timestamp)	
Extracts	the	specified	field.	

	 SELECT extract(hour FROM timestamp '2001-02-16 20:38:40');	
	
Result:	
 date_part	

 20	
 (1 row)	

• extract(field	from	interval)	
Extracts	the	specified	field.	

	 SELECT extract(month FROM interval '2 years 3 months');	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result:	
 date_part	

 3	
 (1 row)	

• isfinite(date)	
Returns	the	result	of	testing	whether	the	input	argument	is	finite	(no	+/-	infinite).	

	 SELECT isfinite(date '2001-02-16');	
	
Result:	
 isfinite	

 t	
 (1 row)	

• isfinite(timestamp)	
Returns	the	result	of	testing	whether	the	input	argument	is	finite	(no	+/-	infinite).	

	 SELECT isfinite(timestamp '2001-02-16 21:28:30');	
	
Result:	
 isfinite	

 t	
 (1 row)	

• isfinite(interval)	
Returns	the	result	of	testing	whether	the	input	argument	is	finite.	

	 SELECT isfinite(interval '4 hours');	
	
Result:	
 isfinite	

 t	
 (1 row)	

• justify_days(interval)	
Adjusts	interval	so	30-day	time	periods	are	represented	as	months.	

	 SELECT justify_days(interval '35 days');	
	
Result:	
 justify_days	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 1 mon 5 days	
 (1 row)	

• justify_hours(interval)	
Adjusts	interval	so	24-hour	time	periods	are	represented	as	days.	

	 SELECT justify_hours(interval '27 hours');	
	
Result:	
 justify_hours	

 1 day 03:00:00	
 (1 row)	

• justify_interval(interval)	
Adjusts	interval	using	justify_days	and	justify_hours,	with	additional	sign	adjustments.	

	 SELECT justify_interval(interval '1 mon -1 hour');	
	
Result:	
 justify_interval	

 29 days 23:00:00	
 (1 row)	

• localtime	
Returns	current	time	of	day.	

	 SELECT localtime;	
	
Result:	
 time	

 11:27:04.72722	
 (1 row)	

• localtimestamp	
Returns	current	date	and	time	(start	of	current	transaction).	

	 SELECT localtimestamp;	
	
Result:	
 timestamp	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 2017-09-29 11:29:52.230028	
 (1 row)	

• make_date(year	int,	month	int,	day	int)	
Creates	date	from	year,	month	and	day	fields.	

	 SELECT make_date(2013, 7, 15);	
	
Result:	
 make_date	

 2013-07-15	
 (1 row)	

• make_interval(years	int	DEFAULT	0,	months	int	DEFAULT	0,	weeks	int	DEFAULT	0,	
days	int	DEFAULT	0,	hours	int	DEFAULT	0,	mins	int	DEFAULT	0,	secs	double	precision	
DEFAULT	0.0)	
Creates	interval	from	years,	months,	weeks,	days,	hours,	minutes	and	seconds	fields.	

	 SELECT make_interval(days => 10);	
	
Result:	
 make_interval	

 10 days	
 (1 row)	

• make_time(hour	int,	min	int,	sec	double	precision)	
Creates	time	from	hour,	minute	and	seconds	fields.	

	 SELECT make_time(8, 15, 23.5);	
	
Result:	
 make_time	

 08:15:23.5	
 (1 row)	

• make_timestamp(year	int,	month	int,	day	int,	hour	int,	min	int,	sec	double	precision)	
Creates	timestamp	from	year,	month,	day,	hour,	minute	and	seconds	fields.	

	 SELECT make_timestamp(2013, 7, 15, 8, 15, 23.5);	
	
Result:	
 make_timestamp	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 2013-07-15 08:15:23.5	
 (1 row)	

• make_timestamptz(year	int,	month	int,	day	int,	hour	int,	min	int,	sec	double	precision,	
[timezone	text])	
Creates	timestamp	with	time	zone	from	year,	month,	day,	hour,	minute	and	seconds	
fields;	if	timezone	is	not	specified,	the	current	time	zone	is	used.	

	 SELECT make_timestamptz(2013, 7, 15, 8, 15, 23.5);	
	
Result:	
 make_timestampz	

 2013-07-15 08:15:23.5+01	
 (1 row)	

• now()	
Returns	current	date	and	time	(start	of	current	transaction).	

	 SELECT now();	
	
Result:	
 now 	

 2017-10-11 16:09:51.154262+09	
 (1 row)	

• statement_timestamp()	
Returns	current	date	and	time.	

	 SELECT statement_timestamp();	
	
Result:	
 statement_timestamp 	

 2017-10-11 16:08:59.641426+09	
 (1 row)	

• timeofday()	
Returns	current	date	and	time.	

	 SELECT timeofday();	
	
Result:	
 timeofday 	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 Wed Oct 11 16:09:26.934061 2017 KST	
 (1 row)	

• transaction_timestamp()	
Returns	current	date	and	time.	

	 SELECT transaction_timestamp();	
	
Result:	
 transaction_timestamp 	

 2017-10-11 16:10:21.530521+09	
 (1 row)	

• to_timestamp(double	precision)	
Converts	Unix	epoch	(seconds	since	1970-01-01	00:00:00+00)	to	timestamp.	

	 SELECT to_timestamp(1284352323);	
	
Result:	
 to_timestamp 	

 2010-09-13 13:32:03+09	
 (1 row)	

Enum Support functions

For	enum	types,	there	are	several	functions	that	allow	cleaner	programming	without	hard-
coding	particular	values	of	an	enum	type.	

To	execute	the	example	in	the	function	description,	create	an	enum	type	as	shown	below	
first.	

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow', 'green', 'blue', 'pur
ple');	

• enum_first(anyenum)	
Returns	the	first	value	of	the	input	enum	type.	

	 SELECT enum_first(null::rainbow);	
	
Result:	
 enum_first 	

 red	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• enum_last(anyenum)	
Returns	the	last	value	of	the	input	enum	type.	

	 SELECT enum_last(null::rainbow);	
	
Result:	
 enum_last	

 purple	
 (1 row)	

• enum_range(anyenum)	
Returns	all	values	of	the	input	enum	type	in	an	ordered	array.	

	 SELECT enum_range(null::rainbow);	
	
Result: 	
 enum_range 	

 {red,orange,yellow,green,blue,purple}	
 (1 row)	

• enum_range(anyenum,	anyenum)	
Returns	the	range	between	the	two	given	enum	values,	as	an	ordered	array.	The	values	
must	be	from	the	same	enum	type.	If	the	first	parameter	is	null,	the	result	will	start	
with	the	first	value	of	the	enum	type.	If	the	second	parameter	is	null,	the	result	will	
end	with	the	last	value	of	the	enum	type.	

	 SELECT enum_range('orange'::rainbow, 'green'::rainbow);	
	
Result:	
 enum_range	

 {orange,yellow,green}	
 (1 row)	
	
SELECT enum_range(NULL, 'green'::rainbow);	
Result:	
 enum_range	

 {red,orange,yellow,green}	
 (1 row)	
	
SELECT enum_range('orange'::rainbow, NULL);	
Result:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 enum_range	

 {orange,yellow,green,blue,purple}	
 (1 row)	

Geometric Functions

• area(object)	
Returns	area.	

	 SELECT area(box '((0,0),(1,1))');	
	
Result:	
 area	

 1	
(1 row)	

• center(object)	
Returns	the	center	coordinates	of	object.	

	 SELECT center(box '((0,0),(1,2))');	
	
Result:	
 center	

 (0.5,1)	
 (1 row)	

• diameter(circle)	
Returns	the	diameter	of	circle.	

	 SELECT diameter(circle '((0,0),2.0)');	
	
Result:	
 diameter	

 4	
 (1 row)	

• height(box)	
Returns	the	vertical	size	of	box.	

	 SELECT height(box '((0,0),(1,1))');	
	
Result:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 height	

 1	
 (1 row)	

• isclosed(path)	
Returns	a	logical	value	indicating	whether	the	input	path	is	a	closed	path.	

	 SELECT isclosed(path '((0,0),(1,1),(2,0))');	
	
Result:	
 isclosed	

 t	
 (1 row)	

• isopen(path)	
Returns	a	logical	value	indicating	whether	the	input	path	is	an	open	path.	

	 SELECT isopen(path '[(0,0),(1,1),(2,0)]');	
	
Result:	
 isopen	

 t	
 (1 row)	

• length(object)	
Returns	length	of	the	path.	

	 SELECT length(path '((-1,0),(1,0))');	
	
Result:	
 length	

 4	
 (1 row)	

• npoints(path)	
Returns	the	number	of	points	of	the	input	path.	

	 SELECT npoints(path '[(0,0),(1,1),(2,0)]');	
	
Result:	
 npoints	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 3	
 (1 row)	

• npoints(polygon)	
Returns	the	number	of	polygon	points.	

	 SELECT npoints(polygon '((1,1),(0,0))');	
	
Result:	
 npoints	

 2	
 (1 row)	

• pclose(path)	
Converts	the	input	path	to	closed.	

	 SELECT pclose(path '[(0,0),(1,1),(2,0)]');	
	
Result:	
 pclose 	

 ((0,0),(1,1),(2,0))	
 (1 row)	

• popen(path)	
Converts	the	input	path	to	open.	

	 SELECT popen(path '((0,0),(1,1),(2,0))');	
	
Result:	
 popen 	

 [(0,0),(1,1),(2,0)]	
 (1 row)	

• radius(circle)	
Returns	the	radius	of	circle.	

	 SELECT radius(circle '((0,0),2.0)');	
	
Result:	
 radius 	

 2	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• width(box)	
Returns	the	radius	of	circle.	

	 SELECT width(box '((0,0),(1,1))');	
	
Result:	
 width 	

 1	
(1 row)	

• box(circle)	
Returns	a	box	circumscribed	about	circle.	

	 SELECT box(circle '((0,0),2.0)');	
	
Result:	
 box

--	
 (1.41421356237309,1.41421356237309),(-1.41421356237309,-1.41421356237309)	
 (1 ro
w)	

• box(point)	
Returns	a	box	whose	width	is	zero	(empty	box)	centered	on	the	input	point.	

	 SELECT box(point '(0,0)');	
	
Result:	
 box 	

 (0,0),(0,0)	
 (1 row)	

• box(point,	point)	
Returns	a	box	whose	vertices	are	the	two	input	points.	

	 SELECT box(point '(0,0)', point '(1,1)');	
	
 Result:	
 box 	

 (1,1),(0,0)	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• box(polygon)	
Returns	a	box	circumscribed	about	polygon.	

	 SELECT box(polygon '((0,0),(1,1),(2,0))');	
	
Result:	
 box 	

 (2,1),(0,0)	
 (1 row)	

• bound_box(box,	box)	
Returns	the	smallest	box	that	contains	the	two	boxes	entered.	

	 SELECT bound_box(box '((0,0),(1,1))', box '((3,3),(4,4))');	
	
Result:	
 bound_box 	

 (4,4),(0,0)	
 (1 row)	

• circle(box)	
Returns	a	circle	circumscribed	about	box.	

	 SELECT circle(box '((0,0),(1,1))');	
	
Result:	
 circle 	

 <(0.5,0.5),0.707106781186548>	
 (1 row)	

• circle(point,	double	precision)	
Returns	the	circle	created	using	the	center	coordinates	and	radius	of	the	input	circle.	

	 SELECT circle(point '(0,0)', 2.0);	
	
Result:	
 circle 	

 <(0,0),2>	
 (1 row)	

• circle(polygon)	
Returns	a	circle	with	the	average	of	the	input	coordinate	pairs	as	the	center	of	the	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

circle	and	the	average	distance	from	the	point	to	the	input	coordinate	pair	as	the	
radius.	

	 SELECT circle(polygon '((0,0),(1,1),(2,0))');	
	
 Result:	
 circle 	

 <(1,0.333333333333333),0.924950591148529>	
 (1 row)	

• line(point,	point)	
Returns	the	value	of	the	line.	

	 SELECT line(point '(-1,0)', point '(1,0)');	
	
Result:	
 line 	

 {0,-1,0}	
 (1 row)	

• lseg(box)	
Returns	box	diagonal	to	line	segment.	

	 SELECT lseg(box '((-1,0),(1,0))');	
	
Result:	
 lseg 	

 [(1,0),(-1,0)]	
 (1 row)	

• lseg(point,	point)	
Returns	a	line	segment	with	two	input	points	taken	as	start	and	end	points.	

	 SELECT lseg(point '(-1,0)', point '(1,0)');	
	
Result:	
 lseg 	

 [(1,0),(-1,0)]	
 (1 row)	

• path(polygon)	
Returns	a	polygon	path.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT path(polygon '((0,0),(1,1),(2,0))');	
	
Result:	
 path 	

 ((0,0),(1,1),(2,0))	
 (1 row)	

• point(double	precision,	double	precision)	
Returns	the	value	that	construct	the	point.	

	 SELECT point(23.4, -44.5);	
	
Result:	
 point 	

 (23.4,-44.5)	
 (1 row)	

• point(box)	
Returns	center	of	box.	

	 SELECT point(box '((-1,0),(1,0))');	
	
Result:	
 point 	

 (0,0)	
(1 row)	

• point(circle)	
Returns	center	of	circle.	

	 SELECT point(circle '((0,0),2.0)');	
	
Result:	
 point 	

 (0,0)	
(1 row)	

• point(lseg)	
Returns	center	of	line	segment.	

	 SELECT point(lseg '((-1,0),(1,0))');	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result:	
 point 	

 (0,0)	
(1 row)	

• point(polygon)	
Returns	center	of	polygon.	

	 SELECT point(polygon '((0,0),(1,1),(2,0))');	
	
Result:	
 point 	

 (1,0.333333333333333)	
 (1 row)	

• polygon(box)	
Returns	box	to	4-point	polygon.	

	 SELECT polygon(box '((0,0),(1,1))');	
	
Result:	
 polygon 	

 ((0,0),(0,1),(1,1),(1,0))	
 (1 row)	

• polygon(circle)	
Returns	circle	to	12-point	polygon.	

	 SELECT polygon(circle '((0,0),2.0)');	
	
Result:	
 polygon

 ((-2,0),(-1.73205080756888,1),(-1,1.73205080756888),(-1.22464679914735e-
16,2),	
 (1,1.73205080756888),(1.73205080756888,1),(2,2.44929359829471e-16),	
 (1.73205080756888,-0.999999999999999),(1,-1.73205080756888),(3.673940397
44206e-16,-2),	
 (-0.999999999999999,-1.73205080756888),(-1.73205080756888,-1))	

 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• polygon(npts,	circle)	
Returns	circle	to	npts-point	polygon.	

	 SELECT polygon(12, circle '((0,0),2.0)');	
	
 polygon

 ((-2,0),(-1.73205080756888,1),(-1,1.73205080756888),(-1.22464679914735e-
16,2),	
 (1,1.73205080756888),(1.73205080756888,1),(2,2.44929359829471e-16),	
 (1.73205080756888,-0.999999999999999),(1,-1.73205080756888),(3.673940397
44206e-16,-2),	
 (-0.999999999999999,-1.73205080756888),(-1.73205080756888,-1))	

 (1 row)	

• polygon(path)	
Converts	path	into	a	polygon.	

	 SELECT polygon(path '((0,0),(1,1),(2,0))');	
	
Result:	
 polygon 	

 ((0,0),(1,1),(2,0))	
 (1 row)	

Network Address Functions

• abbrev(inet)	
Returns	abbreviated	display	format	as	text.	

	 SELECT abbrev(inet '10.1.0.0/16');	
	
Result:	
 abbrev 	

 10.1.0.0/16	
 (1 row)	

• abbrev(cidr)	
Returns	abbreviated	display	format	as	text.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT abbrev(cidr '10.1.0.0/16');	
	
Result:	
 abbrev 	

 10.1/16	
 (1 row)	

• broadcast(inet)	
Returns	broadcast	address	for	network.	

	 SELECT broadcast('192.168.1.5/24');	
	
Result:	
broadcast 	

 192.168.1.255/24	
 (1 row)	

• family(inet)	
Extracts	family	of	address;	4	for	IPv4,	6	for	IPv6.	

	 SELECT family('::1');	
	
Result:	
 family 	

 6	
 (1 row)	

• host(inet)	
Extracts	IP	address	as	text.	

	 SELECT host('192.168.1.5/24');	
	
Result:	
 host 	

 192.168.1.5	
 (1 row)	

• hostmask(inet)	
Constructs	host	mask	for	network.	

	 SELECT hostmask('192.168.23.20/30');	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result:	
 hostmask 	

 0.0.0.3	
 (1 row)	

• masklen(inet)	
Extracts	netmask	length.	

	 SELECT masklen('192.168.1.5/24');	
	
Result:	
 masklen 	

 24	
 (1 row)	

• netmask(inet)	
Constructs	netmask	for	network.	

	 SELECT netmask('192.168.1.5/24');	
	
Result:	
 netmask 	

 255.255.255.0	
 (1 row)	

• network(inet)	
Extracts	network	part	of	address.	

	 SELECT network('192.168.1.5/24');	
	
Result:	
 network 	

 192.168.1.0/24	
 (1 row)	

• set_masklen(inet,	int)	
Returns	the	set	netmask	length	for	inet	value.	

	 SELECT set_masklen('192.168.1.5/24', 16);	
	
Result:	
 set_masklen 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 192.168.1.5/16	
 (1 row)	

• set_masklen(cidr,	int)	
Returns	the	set	netmask	length	for	cidr	value.	

	 SELECT set_masklen('192.168.1.0/24'::cidr, 16);	
	
Result:	
 set_masklen 	

 192.168.0.0/16	
 (1 row)	

• text(inet)	
Returns	IP	address	and	netmask	length	as	text.	

	 SELECT text(inet '192.168.1.5');	
	
Result:	
 text 	

 192.168.1.5/32	
 (1 row)	

• inet_same_family(inet,	inet)	
Returns	a	logical	value	indicating	whether	the	address	is	a	family	value.	

	 SELECT inet_same_family('192.168.1.5/24', '::1');	
	
Result:	
 inet_same_family 	

 f	
 (1 row)	

• inet_merge(inet,	inet)	
Returns	the	smallest	network	which	includes	all	of	the	entered	networks.	

	 SELECT inet_merge('192.168.1.5/24', '192.168.2.5/24');	
	
Result:	
 inet_merge 	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 192.168.0.0/22	
 (1 row)	

• trunc(macaddr)	
Sets	the	last	3	bytes	to	zero.	

	 SELECT trunc(macaddr '12:34:56:78:90:ab');	
	
Result:	
 trunc 	

 12:34:56:00:00:00	
 (1 row)	

Text Search Functions

• array_to_tsvector(text[])	
Converts	array	of	lexemes	to	tsvector.	

	 SELECT array_to_tsvector('{fat,cat,rat}'::text[]);	
	
Result:	
 array_to_tsvector 	

 'cat' 'fat' 'rat'	
 (1 row)	

• get_current_ts_config()	
Returns	the	default	text	search	configuration.	

	 SELECT get_current_ts_config();	
	
Result:	
 get_current_ts_config 	

 english	
 (1 row)	

• length(tsvector)	
Returns	number	of	lexemes	in	tsvector.	

	 SELECT length('fat:2,4 cat:3 rat:5A'::tsvector);	
	
Result:	
 length 	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 3	
 (1 row)	

• numnode(tsquery)	
Returns	the	number	of	lexemes	plus	operators	in	tsquery.	

	 SELECT numnode('(fat & rat) | cat'::tsquery);	
	
Result:	
 numnode 	

 5	
 (1 row)	

• plainto_tsquery([config	regconfig	,]	query	text)	
Produces	tsquery	ignoring	punctuation.	

	 SELECT plainto_tsquery('english', 'The Fat Rats');	
	
Result:	
 plainto_tsquery 	

 'fat' & 'rat'	
 (1 row)	

• phraseto_tsquery([config	regconfig	,]	query	text)	
Produces	tsquery	that	searches	for	a	phrase,	ignoring	punctuation.	

	 SELECT phraseto_tsquery('english', 'The Fat Rats');	
	
Result:	
 phraseto_tsquery 	

 'fat' <-> 'rat'	
 (1 row)	

• querytree(query	tsquery)	
Returns	indexable	part	of	a	tsquery.	

	 SELECT querytree('foo & ! bar'::tsquery);	
	
Result:	
 querytree 	

 'foo'	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• setweight(vector	tsvector,	weight	"char")	
Assigns	weight	to	each	element	of	vector.	

	 SELECT setweight('fat:2,4 cat:3 rat:5B'::tsvector, 'A');	
	
Result:	
 setweight 	

 'cat':3A 'fat':2A,4A 'rat':5A 	
 (1 row)	

• setweight(vector	tsvector,	weight	"char",	lexemes	text[])	
Assigns	weight	to	elements	of	vector	that	are	listed	in	lexemes.	

	 SELECT setweight('fat:2,4 cat:3 rat:5B'::tsvector, 'A', '{cat,rat}');	
	
Result:	
 setweight 	

 'cat':3A 'fat':2,4 'rat':5A	
 (1 row)	

• strip(tsvector)	
Removes	positions	and	weights	from	tsvector.	

	 SELECT strip('fat:2,4 cat:3 rat:5A'::tsvector);	
	
Result:	
 strip 	

 'cat' 'fat' 'rat' 	
 (1 row)	

• to_tsquery([config	regconfig	,]	query	text)	
Normalizes	words	and	converts	to	tsquery.	

	 SELECT to_tsquery('english', 'The & Fat & Rats');	
	
Result:	
 to_tsquery 	

 'fat' & 'rat' 	
 (1 row)	

• to_tsvector([config	regconfig	,]	document	text)	
Reduce	document	text	to	tsvector.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT to_tsvector('english', 'The Fat Rats');	
	
Result:	
 to_tsvector 	

 'fat':2 'rat':3 	
 (1 row)	

• ts_delete(vector	tsvector,	lexeme	text)	
Removes	given	lexeme	from	vector.	

	 SELECT ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, 'fat');	
	
Result:	
 ts_delete 	

 'cat':3 'rat':5A 	
 (1 row)	

• ts_delete(vector	tsvector,	lexemes	text[])	
Removes	any	occurrence	of	lexemes	in	lexemes	from	vector.	

	 SELECT ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, ARRAY['fat','rat']);	
	
Result:	
 ts_delete 	

 'cat':3 	
 (1 row)	

• ts_filter(vector	tsvector,	weights	"char"[])	
Selects	only	elements	with	given	weights	from	vector.	

	 SELECT ts_filter('fat:2,4 cat:3b rat:5A'::tsvector, '{a,b}');	
	
Result:	
 ts_filter 	

 'cat':3B 'rat':5A 	
 (1 row)	

• ts_headline([config	regconfig,]	document	text,	query	tsquery	[,	options	text])	
Displays	a	query	match.	

	 SELECT ts_headline('x y z', 'z'::tsquery);	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result:	
 ts_headline 	

 x y z 	
 (1 row)	

• ts_rank([weights	float4[],]	vector	tsvector,	query	tsquery	[,	normalization	integer])	
Ranks	documents	for	query.	

	 SELECT ts_rank(to_tsvector('This is an example of document'), to_tsquery
('example'));	
	
Result: 	
 ts_rank 	

 0.0607927	
 (1 row)	

• ts_rank_cd([weights	float4[],]	vector	tsvector,	query	tsquery	[,	normalization	integer])	
Ranks	documents	for	query	using	cover	density.	

	 SELECT ts_rank_cd(to_tsvector('This is an example of document'), to_tsque
ry('example'));	
	
Result: 	
 ts_rank_cd 	

 0.1	
 (1 row)	

• ts_rewrite(query	tsquery,	target	tsquery,	substitute	tsquery)	
Replaces	target	with	substitute	within	query.	

	 SELECT ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'foo|bar'::tsquery);	
	
Result:	
 ts_rewrite 	

 'b' & ('foo' | 'bar') 	
 (1 row)	

• ts_rewrite(query	tsquery,	select	text)	
Replaces	the	first	column	value	of	the	SELECT	result	with	the	second	column	value	of	
the	SELECT	result.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 create table aliases (t tsquery primary key, s tsquery);	
insert into aliases values ('a', 'foo|bar');	
	
SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases'); 	
	
Result:	
 ts_rewrite 	

 'b' & ('bar' | 'foo') 	
 (1 row)	

• tsquery_phrase(query1	tsquery,	query2	tsquery)	
Makes	query	that	searches	for	query1	followed	by	query2	(same	as	<->	operator).	

	 SELECT tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'));	
	
Result:	
 tsquery_phrase 	

 'fat' <-> 'cat' 	
 (1 row)	

• tsquery_phrase(query1	tsquery,	query2	tsquery,	distance	integer)	
Makes	query	that	searches	for	query1	followed	by	query2	at	distance	distance.	

	 SELECT tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10);	
	
Result:	
 tsquery_phrase 	

 'fat' <10> 'cat' 	
 (1 row)	

• tsvector_to_array(tsvector)	
Converts	tsvector	to	array	of	lexemes.	

	 SELECT tsvector_to_array('fat:2,4 cat:3 rat:5A'::tsvector);	
	
Result:	
 tsvector_to_array 	

 {cat,fat,rat} 	
 (1 row)	

• tsvector_update_trigger()	
Triggers	the	function	for	automatic	tsvector	column	update.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE ON messages 	
FOR EACH ROW EXECUTE PROCEDURE	
tsvector_update_trigger(tsv, 'pg_catalog.english', title, body);	
	
INSERT INTO messages VALUES ('title here', 'the body text is here');	
	
SELECT * FROM messages;	
	
Result:	
 title | body | tsv 	
------------+-----------------------+----------------------------	
 title here | the body text is here | 'bodi':4 'text':5 'titl':1 	
 (1 row)	

• tsvector_update_trigger_column()	
Triggers	the	function	for	automatic	tsvector	column	update.	

	 CREATE TRIGGER ... tsvector_update_trigger_column(tsv, configcol, title,
body);	

• unnest(tsvector,	OUT	lexeme	text,	OUT	positions	smallint[],	OUT	weights	text)	
Expands	a	tsvector	to	a	set	of	rows.	

	 SELECT unnest('fat:2,4 cat:3 rat:5A'::tsvector);	
	
Result:	
 unnest 	

 (cat,{3},{D})	
 (fat,"{2,4}","{D,D}")	
 (rat,{5},{A}) 	
 (3 row)	

• ts_debug([config	regconfig,]	document	text,	OUT	alias	text,	OUT	description	text,	OUT	
token	text,	OUT	dictionaries	regdictionary[],	OUT	dictionary	regdictionary,	OUT	
lexemes	text[])	
Tests	a	configuration.	

	 SELECT ts_debug('english', 'The Brightest supernovaes');	
	
Result:	
 ts_debug

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 (asciiword,"Word, all ASCII",The,{english_stem},english_stem,{})	
 (blank,"Space symbols"," ",{},,)	
 (asciiword,"Word, all ASCII",Brightest,{english_stem},english_stem,{brig
htest})	
 (blank,"Space symbols"," ",{},,)	
 (asciiword,"Word, all ASCII",supernovaes,{english_stem},english_stem,{su
pernova})	

 (5 row)	

• ts_lexize(dict	regdictionary,	token	text)	
Tests	a	dictionary.	

	 SELECT ts_lexize('english_stem', 'stars');	
	
Result:	
 ts_lexize 	

 {star}	
 (1 row)	

• ts_parse(parser_name	text,	document	text,	OUT	tokid	integer,	OUT	token	text)	
Tests	a	parser.	

	 SELECT ts_parse('default', 'foo - bar');	
	
Result:	
 ts_parse 	

 (1,foo)	
 (12," ")	
 (12,"- ")	
 (1,bar)	
 (4 row)	

• ts_parse(parser_oid	oid,	document	text,	OUT	tokid	integer,	OUT	token	text)	
Tests	a	parser	with	oid.	

	 SELECT ts_parse(3722, 'foo - bar');	
	
Result:	
 ts_parse 	

 (1,foo)	
 (12," ")	
 (12,"- ")	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 (1,bar)	
 (4 row)	

• ts_token_type(parser_name	text,	OUT	tokid	integer,	OUT	alias	text,	OUT	description	text)	
Gets	token	types	defined	by	parser.	

	 SELECT ts_token_type('default');	
	
Result:	
 ts_token_type 	

 (1,asciiword,"Word, all ASCII")	
 ...	
 (23 row) 	

• ts_token_type(parser_oid	oid,	OUT	tokid	integer,	OUT	alias	text,	OUT	description	text)	
Gets	token	types	defined	by	parser.	

	 SELECT ts_token_type(3722);	
	
Result:	
 ts_token_type 	

 (1,asciiword,"Word, all ASCII")	
 ...	
 (23 row) 	

• ts_stat(sqlquery	text,	[weights	text,]	OUT	word	text,	OUT	ndoc	integer,	OUT	nentry	
integer)	
Returns	statistics	of	a	tsvector	column.	

	 SELECT ts_stat('SELECT vector FROM apod');	
	
Result:	
 ts_stat 	

(foo,10,15)	
...	
 (4 row)	

JSON Functions

• to_json(anyelement),	to_jsonb(anyelement)	
Returns	the	value	as	json	or	jsonb.	Arrays	and	composites	are	converted	to	arrays	
and	objects;	otherwise,	if	there	is	a	cast	from	the	type	to	json,	the	cast	function	will	be	
used	to	perform	the	conversion	or	a	scalar	value	is	produced.	For	any	scalar	type	other	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

than	a	number,	a	Boolean,	or	a	null	value,	the	text	representation	will	be	used,	in	such	
a	fashion	that	it	is	a	valid	json	or	jsonb	value.	

	 SELECT to_json('Fred said "Hi."'::text);	
	
Result:	
 to_json	

 "Fred said "Hi.\""	
 (1 row)	

• array_to_json(anyarray	[,	pretty_bool])	
Returns	the	array	as	a	JSON	array.	Line	feeds	will	be	added	between	dimension-1	
elements	if	returns	pretty_bool	is	true.	

	 SELECT array_to_json('{{1,5},{99,100}}'::int[]);	
	
Result:	
 array_to_json 	

 [[1,5],[99,100]]	
 (1 row)	
	
SELECT array_to_json('{{1,5},{99,100}}'::int[], true);	
	
Result:	
 array_to_json 	

 [[1,5], +	
 [99,100]] 	
 (1 row)	

• row_to_json(record	[,	pretty_bool])	
Returns	the	row	as	a	JSON	object.	Line	feeds	will	be	added	between	level-1	elements	if	
pretty_bool	is	true.	

	 SELECT row_to_json(row(1,'foo'));	
	
Result:	
 row_to_json 	

 {"f1":1,"f2":"foo"}	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• json_build_array(VARIADIC	"any"),	jsonb_build_array(VARIADIC	"any")	
Builds	a	possibly-heterogeneously-typed	JSON	array	out	of	a	variable	argument	list.	

	 SELECT json_build_array(1,2,'3',4,5);	
	
Result:	
 json_build_array 	

 [1, 2, "3", 4, 5]	
 (1 row)	

• json_build_object(VARIADIC	"any"),	jsonb_build_object(VARIADIC	"any")	
Builds	a	JSON	object	out	of	a	variable	argument	list.	By	convention,	the	argument	list	
consists	of	alternating	keys	and	values.	

	 SELECT json_build_object('foo',1,'bar',2);	
	
Result:	
 json_build_object 	

 {"foo" : 1, "bar" : 2}	
 (1 row)	

• json_object(text[]),	jsonb_object(text[])	
Builds	a	JSON	object	out	of	a	text	array.	The	array	must	have	either	exactly	one	
dimension	with	an	even	number	of	members,	in	which	case	they	are	taken	as	
alternating	key/value	pairs,	or	two	dimensions	such	that	each	inner	array	has	exactly	
two	elements,	which	are	taken	as	a	key/value	pair.	

	 SELECT json_object('{a, 1, b, "def", c, 3.5}');	
SELECT json_object('{{a, 1},{b, "def"},{c, 3.5}}');	
	
Result:	
 json_object 	

 {"a" : "1", "b" : "def", "c" : "3.5"}	
 (1 row)	

• json_object(keys	text[],	values	text[]),	jsonb_object(keys	text[],	values	text[])	
This	form	of	json_object	takes	keys	and	values	pairwise	from	two	separate	arrays.	In	
all	other	respects	it	is	identical	to	the	one-argument	form.	

	 SELECT json_object('{a, b}', '{1,2}');	
	
Result:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 json_object 	

 {"a" : "1", "b" : "2"}	
 (1 row)	

• json_array_length(json),	jsonb_array_length(jsonb)	
Returns	the	number	of	elements	in	the	outermost	JSON	array.	

	 SELECT json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]');	
	
Result:	
 json_array_length 	

 5	
 (1 row)	

• json_each(json),	jsonb_each(jsonb)	
Expands	the	outermost	JSON	object	into	a	set	of	key/value	pairs.	

	 SELECT * FROM json_each('{"a":"foo", "b":"bar"}');	
	
Result:	
 key | value 	
-----+-------	
 a | "foo"	
 b | "bar"	
 (2 row)	

• json_each_text(json),	jsonb_each_text(jsonb)	
Expands	the	outermost	JSON	object	into	a	set	of	key/value	pairs.	The	returned	values	
will	be	of	type	text.	

	 SELECT * FROM json_each_text('{"a":"foo", "b":"bar"}');	
	
Result:	
 key | value 	
-----+-------	
 a | foo	
 b | bar	
 (2 row)	

• json_extract_path(from_json	json,	VARIADIC	path_elems	text[]),	
jsonb_extract_path(from_json	jsonb,	VARIADIC	path_elems	text[])	
Returns	JSON	value	pointed	to	by	path_elems	(equivalent	to	#>	operator).	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT * FROM json_extract_path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}
','f4');	
	
Result:	
 json_extract_path 	

 {"f5":99,"f6":"foo"}	
 (1 row)	

• json_extract_path_text(from_json	json,	VARIADIC	path_elems	text[]),	
jsonb_extract_path_text(from_json	jsonb,	VARIADIC	path_elems	text[])	
Returns	JSON	value	pointed	to	by	path_elems	as	text	(equivalent	to	#>>	operator).	

	 SELECT json_extract_path_text('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}',
'f4', 'f6');	
	
Result:	
 json_extract_path_text 	

 foo	
 (1 row)	

• json_object_keys(json),	jsonb_object_keys(jsonb)	
Returns	set	of	keys	in	the	outermost	JSON	object.	

	 SELECT json_object_keys('{"f1":"abc","f2":{"f3":"a", "f4":"b"}}');	
	
Result:	
 json_object_keys 	

 f1	
 f2	
 (2 row)	

• json_populate_record(base	anyelement,	from_json	json),	jsonb_populate_record(base	
anyelement,	from_json	jsonb)	
Expands	the	object	in	from_json	to	a	row	whose	columns	match	the	record	type	
defined	by	base.	

	 CREATE TABLE myrowtype (a int, b int);	
	
SELECT * FROM json_populate_record(null::myrowtype, '{"a":1,"b":2}');	
	
Result: 	
 a | b 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

---+---	
 1 | 2	
(1 row)	

• json_populate_recordset(base	anyelement,	from_json	json),	
jsonb_populate_recordset(base	anyelement,	from_json	jsonb)	
Expands	the	outermost	array	of	objects	in	from_json	to	a	set	of	rows	whose	columns	
match	the	record	type	defined	by	base.	

	 SELECT * FROM json_populate_recordset(null::myrowtype, '[{"a":1,"b":2},{"
a":3,"b":4}]');	
	
Result: 	
 a | b 	
---+---	
 1 | 2	
 3 | 4	
(2 row)	

• json_array_elements(json),	jsonb_array_elements(jsonb)	
Expands	a	JSON	array	to	a	set	of	JSON	values.	

	 SELECT * FROM json_array_elements('[1,true, [2,false]]');	
	
Result: 	
 value 	

 1	
 true	
[2,false]]	
 (3 row)	

• json_array_elements_text(json),	jsonb_array_elements_text(jsonb)	
Expands	a	JSON	array	to	a	set	of	text	values.	

	 SELECT * FROM json_array_elements_text('["foo", "bar"]');	
	
Result: 	
 value 	

 foo	
 bar	
(2 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• json_typeof(json),	jsonb_typeof(jsonb)	
Returns	the	type	of	the	outermost	JSON	value	as	a	text	string.	Possible	types	are	
object,	array,	string,	number,	boolean,	and	null.	

	 SELECT json_typeof('-123.4');	
	
Result: 	
 json_typeof 	

 number	
 (1 row)	

• json_to_record(json),	jsonb_to_record(jsonb)	
Builds	an	arbitrary	record	from	a	JSON	object.	As	with	all	functions	returning	record,	
the	caller	must	explicitly	define	the	structure	of	the	record	with	an	AS	clause.	

	 SELECT * FROM json_to_record('{"a":1,"b":[1,2,3],"c":"bar"}') as x(a int,
 b text, d text);	
	
Result: 	
 a | b | d 	
---+---------+---	
 1 | [1,2,3] | 	
 (1 row)	

• json_to_recordset(json),	jsonb_to_recordset(jsonb)	
Builds	an	arbitrary	set	of	records	from	a	JSON	array	of	objects.	As	with	all	functions	
returning	record,	the	caller	must	explicitly	define	the	structure	of	the	record	with	an	
AS	clause.	

	 SELECT * FROM json_to_recordset('[{"a":1,"b":"foo"},{"a":"2","c":"bar"}]')
 	
as x(a int, b text);	
	
Result: 	
 a | b 	
---+-----	
 1 | foo	
 2 | 	
 (2 row)	

• json_strip_nulls(from_json	json),	jsonb_strip_nulls(from_json	jsonb)	
Returns	from_json	with	all	object	fields	that	have	null	values	omitted.	Other	null	
values	are	unchanged.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT json_strip_nulls('[{"f1":1,"f2":null},2,null,3]');	
	
Result: 	
 json_strip_nulls 	

 [{"f1":1},2,null,3] 	
 (1 row)	

• jsonb_set(target	jsonb,	path	text[],	new_value	jsonb[,	create_missing	boolean])	
Returns	target	with	the	section	designated	by	path	replaced	by	new_value,	or	with	
new_value	added			
if	create_missing	is	true	(default	is	true)	and	the	item	designated	by	path	does	not	
exist.	As	with	the	path	orientated	operators,	negative	integers	that	appear	in	path	
count	from	the	end	of	JSON	arrays.	

	 SELECT jsonb_set('[{"f1":1,"f2":null},2,null,3]', '{0,f1}','[2,3,4]', fal
se);	
	
Result: 	
 jsonb_set 	

 [{"f1": [2, 3, 4], "f2": null}, 2, null, 3]	
 (1 row)	
	
SELECT jsonb_set('[{"f1":1,"f2":null},2]', '{0,f3}','[2,3,4]');	
	
Result: 	
 jsonb_set 	

 [{"f1": 1, "f2": null, "f3": [2, 3, 4]}, 2]	
 (1 row)
 	

• jsonb_insert(target	jsonb,	path	text[],	new_value	jsonb,	[insert_after	boolean])	
Returns	target	with	new_value	inserted.	If	target	section	designated	by	path	is	in	a	
JSONB	array,	new_value	will	be	inserted	before	target	or	after	if	insert_after	is	true	
(default	is	false).	If	target	section	designated	by	path	is	in	JSONB	object,	new_value	
will	be	inserted	only	if	target	does	not	exist.	As	with	the	path	orientated	operators,	
negative	integers	that	appear	in	path	count	from	the	end	of	JSON	arrays.	

	 SELECT jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"');	
	
Result: 	
 jsonb_insert 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 {"a": [0, "new_value", 1, 2]}	
 (1 row)	
	
SELECT jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"', true);	
	
Result: 	
 jsonb_insert 	

 {"a": [0, 1, "new_value", 2]}	
 (1 row) 	

• jsonb_pretty(from_json	jsonb)	
Returns	from_json	as	indented	JSON	text.	

	 SELECT jsonb_pretty('[{"f1":1,"f2":null},2,null,3]');	
	
Result: 	
 jsonb_pretty 	

 [+	
 { +	
 "f1": 1, +	
 "f2": null+	
 }, +	
 2, +	
 null, +	
 3 +	
]	
 (1 row)	

Sequence Manipulation Functions

This	section	describes	functions	for	operating	on	sequences.	Sequences	can	be	created	with	
CREATE	SEQUENCE.	

CREATE SEQUENCE serial increment by 1 start 101;	

• nextval(regclass)	
Advances	sequence	and	returns	new	value.	

	 SELECT nextval('serial');	
	
Result: 	
 nextval 	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 101 	
 (1 row) 	

• currval(regclass)	
Returns	value	most	recently	obtained	with	nextval	for	specified	sequence.	

	 SELECT currval('serial');	
	
Result: 	
 currval 	

 101 	
 (1 row) 	

• lastval()	
Returns	value	most	recently	obtained	with	nextval	for	any	sequence.	

	 SELECT lastval();	
	
Result: 	
 lastval 	

 101 	
 (1 row) 	

• setval(regclass,	bigint)	
Sets	sequence's	current	value.	

	 SELECT setval('serial', 101);	
	
Result: 	
 setval 	

 101	
 (1 row) 	

• setval(regclass,	bigint,	boolean)	
Sets	sequence's	current	value	and	is_called	flag.	

	 -- true	
SELECT setval('serial', 101, true);	
	
Result: 	
 setval 	

 101	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 (1 row)	
	
SELECT nextval('serial');	
	
Result: 	
 nextval 	

 102	
 (1 row)	
	
-- false	
SELECT setval('serial', 101, false);	
	
Result: 	
 setval 	

 101	
 (1 row)	
	
SELECT nextval('serial');	
	
Result: 	
 nextval 	

 101	
 (1 row)	

Array Functions

• array_append(anyarray,	anyelement)	
Appends	anyelement	to	the	end	of	an	array.	

	 SELECT array_append(ARRAY[1,2], 3);	
	
Result:	
 array_append 	

 {1,2,3}	
 (1 row) 	

• array_cat(anyarray,	anyarray)	
Concatenates	two	arrays.	

	 SELECT array_cat(ARRAY[1,2,3], ARRAY[4,5]);	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result:	
 array_cat 	

 {1,2,3,4,5}	
 (1 row) 	

• array_ndims(anyarray)	
Returns	the	number	of	dimensions	of	the	array.	

	 SELECT array_ndims(ARRAY[[1,2,3], [4,5,6]]);	
	
Result:	
 array_ndims 	

 2	
 (1 row) 	

• array_dims(anyarray)	
Returns	a	text	representation	of	array's	dimensions.	

	 SELECT array_dims(ARRAY[[1,2,3], [4,5,6]]);	
	
Result:	
 array_dims 	

 [1:2][1:3]	
 (1 row) 	

• array_fill(anyelement,	int[],	[,	int[]])	
Returns	an	array	initialized	with	optionally-supplied	value	and	dimensions.	

	 SELECT array_fill(7, ARRAY[3], ARRAY[2]);	
	
Result:	
 array_fill 	

 [2:4]={7,7,7}	
 (1 row) 	

• array_length(anyarray,	int)	
Returns	the	length	of	the	requested	array	dimension.	

	 SELECT array_length(array[1,2,3], 1);	
	
Result:	
 array_length 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 3	
 (1 row) 	

• array_lower(anyarray,	int)	
Returns	the	lower	bound	of	the	requested	array	dimension.	

	 SELECT array_lower('[0:2]={1,2,3}'::int[], 1);	
	
Result:	
 array_lower 	

 0	
 (1 row) 	

• array_position(anyarray,	anyelement	[,	int])	
Returns	the	index	of	the	first	occurrence	of	the	second	argument	in	the	array,	starting	
at	the	element	indicated	by	the	third	argument	or	at	the	first	element	(array	must	be	
one-dimensional).	

	 SELECT array_position(ARRAY['sun','mon','tue','wed','thu','fri','sat'], '
mon');	
	
Result:	
 array_position 	

 2	
 (1 row) 	

• array_positions(anyarray,	anyelement)	
Returns	an	array	of	indexes	of	all	occurrences	of	the	second	argument	in	the	array	
given	as	first	argument	(array	must	be	one-dimensional).	

	 SELECT array_positions(ARRAY['A','A','B','A'], 'A');	
	
Result:	
 array_positions 	

 {1,2,4}	
 (1 row) 	

• array_prepend(anyelement,	anyarray)	
Appends	anyelement	to	the	beginning	of	an	array.	

	 SELECT array_prepend(1, ARRAY[2,3]);	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result:	
 array_prepend 	

 {1,2,3}	
 (1 row) 	

• array_remove(anyarray,	anyelement)	
Removes	all	elements	equal	to	the	given	value	from	the	array.	

	 SELECT array_remove(ARRAY[1,2,3,2], 2);	
	
Result:	
 array_remove 	

 {1,3}	
 (1 row) 	

• array_replace(anyarray,	anyelement,	anyelement)	
Replaces	each	array	element	equal	to	the	given	value	with	a	new	value.	

	 SELECT array_replace(ARRAY[1,2,5,4], 5, 3);	
	
Result:	
 array_replace 	

 {1,2,3,4}	
 (1 row) 	

• array_to_string(anyarray,	text	[,	text])	
Concatenates	array	elements	using	specified	delimiter	and	optional	null	string.	

	 SELECT array_to_string(ARRAY[1, 2, 3, NULL, 5], ',', '*');	
	
Result:	
 array_to_string 	

 1,2,3,*,5	
 (1 row) 	

• array_upper(anyarray,	int)	
Returns	upper	bound	of	the	requested	array	dimension.	

	 SELECT array_upper(ARRAY[1,8,3,7], 1);	
	
Result:	
 array_upper 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 4	
 (1 row) 	

• cardinality(anyarray)	
Returns	the	total	number	of	elements	in	the	array,	or	0	if	the	array	is	empty.	

	 SELECT cardinality(ARRAY[[1,2],[3,4]]);	
	
Result:	
 cardinality 	

 4	
 (1 row) 	

• string_to_array(text,	text	[,	text])	
Splits	string	into	array	elements	using	supplied	delimiter	and	optional	null	string.	

	 SELECT string_to_array('xx~^~yy~^~zz', '~^~', 'yy');	
	
Result:	
 string_to_array 	

 {xx,NULL,zz}	
 (1 row) 	

• unnest(anyarray)	
Expands	an	array	to	a	set	of	rows.	

	 SELECT unnest(ARRAY[1,2]);	
	
Result:	
 unnest 	

 1	
 2	
 (2 row) 	

• unnest(anyarray,	anyarray	[,	...])	
Expands	multiple	arrays	(possibly	of	different	types)	to	a	set	of	rows.	This	is	only	
allowed	in	the	FROM	clause.	

	 SELECT * FROM unnest(ARRAY[1,2],ARRAY['foo','bar','baz']);	
	
Result:	
 unnest | unnest 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

--------+--------	
 1 | foo	
 2 | bar	
 | baz 	
	
 (1 row) 	

Range Functions and Operators

• lower(anyrange)	
Returns	the	lower	bound	of	the	input	numeric	range.	

	 SELECT * FROM lower(numrange(1.1,2.2));	
	
Result:	
	
 lower 	

 1.1	
 (1 row)	

• upper(anyrange)	
Returns	upper	of	the	input	numeric	range.	

	 SELECT * FROM upper(numrange(1.1,2.2));	
	
Result:	
	
 upper 	

 2.2	
 (1 row)	

• isempty(anyrange)	
Returns	a	boolean	value	indicating	whether	the	entered	number	range	is	empty.	

	 SELECT * FROM isempty(numrange(1.1,2.2));	
	
Result:	
	
 isempty 	

 f	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• lower_inc(anyrange)	
Returns	whether	the	lower	bound	of	the	entered	number	range	exists.	

	 SELECT * FROM lower_inc(numrange(1.1,2.2));	
	
Result:	
	
 lower_inc 	

 t	
 (1 row)	

• upper_inc(anyrange)	
Returns	a	logical	value	indicating	whether	the	upper	bound	of	the	input	numeral	range	
exists.	

	 SELECT * FROM upper_inc(numrange(1.1,2.2));	
	
Result:	
	
 lower_inc 	

 f	
 (1 row)	

• lower_inf(anyrange)	
Returns	a	logical	value	indicating	whether	the	lower	bound	of	the	entered	number	
range	is	infinite.	

	 SELECT * FROM lower_inf('(,)'::daterange);	
	
Result:	
	
 lower_inf 	

 t	
 (1 row)	

• upper_inf(anyrange)	
Returns	a	logical	value	indicating	whether	the	upper	bound	of	the	entered	number	
range	is	infinite.	

	 SELECT * FROM upper_inf('(,)'::daterange);	
	
Result:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	
 upper_inf 	

 t	
 (1 row)	

• range_merge(anyrange,	anyrange)	
Returns	the	smallest	range	which	includes	both	of	the	given	ranges.	

	 SELECT * FROM range_merge('[1,2)'::int4range, '[3,4)'::int4range);	
	
Result:	
	
 range_merge 	

 [1,4)	
 (1 row)	

Aggregate Functions

• array_agg(expression)	
Returns	input	values,	including	nulls,	concatenated	into	an	array.	

	 Argument	Type(s):	any non-array type	
Return	Type:	array of the argument type	

• array_agg(expression)	
Returns	input	arrays	concatenated	into	array	of	one	higher	dimension	(note:	inputs	
must	all	have	same	dimensionality,	and	cannot	be	empty	or	NULL).	

	 Argument	Type(s):	any array type	
Return	Type:	same as argument data type	

• avg(expression)	
Returns	the	average	(arithmetic	mean)	of	all	input	values.	

	 Argument	Type(s):	smallint, int, bigint, real, double precision, numeric,
or interval	
Return	Type:	numeric for any integer-type argument, double precision for a
floating-point argument, otherwise the same as the argument data type	

• bit_and(expression)	
Returns	the	bitwise	AND	of	all	non-null	input	values,	or	null	if	none.	

	 Argument	Type(s):	smallint, int, bigint, or bit	
Return	Type:	same as argument data type	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• bit_or(expression)	
Returns	the	bitwise	OR	of	all	non-null	input	values,	or	null	if	none.	

	 Argument	Type(s):	smallint, int, bigint, or bit	
Return	Type:	same as argument data type	

• bool_and(expression)	
Returns	true	if	all	input	values	are	true,	otherwise	false.	

	 Argument	Type(s):	bool	
Return	Type:	bool	

• bool_or(expression)	
Returns	true	if	at	least	one	input	value	is	true,	otherwise	false.	

	 Argument	Type(s):	bool	
Return	Type:	bool	

• count(anything)	
Returns	the	number	of	input	rows.	

	 Argument	Type(s):	any	
Return	Type:	bigint	

• count(expression)	
Returns	the	number	of	input	rows	for	which	the	value	of	expression	is	not	null.	

	 Argument	Type(s):	any	
Return	Type:	bigint	

• every(expression)	
Equivalent	to	bool_and.	

	 Argument	Type(s):	bool	
Return	Type:	bool	

• json_agg(expression)	
Aggregates	values	as	a	JSON	array.	

	 Argument	Type(s):	any	
Return	Type:	json	

• jsonb_agg(expression)	
Aggregates	values	as	a	JSON	array.	

	 Argument	Type(s):	any	
Return	Type:	jsonb	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• json_object_agg(name,	value)	
Aggregates	name/value	pairs	as	a	JSON	object.	

	 Argument	Type(s):	(any, any)	
Return	Type:	json	

• jsonb_object_agg(name,	value)	
Aggregates	name/value	pairs	as	a	JSON	object.	

	 Argument	Type(s):	(any, any)	
Return	Type:	jsonb	

• max(expression)	
Returns	the	maximum	value	of	expression	across	all	input	values.	

	 Argument	Type(s):	any numeric, string, date/time, network, or enum type,
or arrays of these types	
Return	Type:	same as argument type	

• min(expression)	
Returns	the	minimum	value	of	expression	across	all	input	values.	

	 Argument	Type(s):	any numeric, string, date/time, network, or enum type,
or arrays of these types	
Return	Type:	same as argument type	

• string_agg(expression,	delimiter)	
Returns	the	input	values	concatenated	into	a	string,	separated	by	delimiter.	

	 Argument	Type(s):	(text, text) or (bytea, bytea)	
Return	Type:	same as argument types	

• sum(expression)	
Returns	the	sum	of	expression	across	all	input	values.	

	 Argument	Type(s):	smallint, int, bigint, real, double precision, numeric,
interval, or money	
Return	Type:	bigint for smallint or int arguments, numeric for bigint
arguments, otherwise the same as the argument data type	

• xmlagg(expression)	
Returns	the	concatenation	of	XML	values.	

	 Argument	Type(s):	xml	
Return	Type:	xml	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• corr(Y,	X)	
Returns	correlation	coefficient	of	the	two	entered	numbers.	

	 Argument	Type(s):	double precision	
Return	Type:	double precision	

• covar_pop(Y,	X)	
Returns	population	covariance	of	the	two	entered	numbers.	

	 Argument	Type(s):	double precision	
Return	Type:	double precision	

• covar_samp(Y,	X)	
Returns	sample	covariance	of	the	two	entered	numbers.	

	 Argument	Type(s):	double precision	
Return	Type:	double precision	

• regr_avgx(Y,	X)	
Returns	average	of	the	independent	variable	X	(sum(X)/N).	

	 Argument	Type(s):	double precision	
Return	Type:	double precision	

• regr_avgy(Y,	X)	
Returns	average	of	the	dependent	variable	Y	(sum(Y)/N).	

	 Argument	Type(s):	double precision	
Return	Type:	double precision	

• regr_count(Y,	X)	
Returns	the	number	of	input	rows	in	which	both	expressions	are	nonnull.	

	 Argument	Type(s):	double precision	
Return	Type:	bigint	

• regr_intercept(Y,	X)	
Returns	y-intercept	of	the	least-squares-fit	linear	equation	determined	by	the	(X,	Y)	
pairs.	

	 Argument	Type(s):	double precision	
Return	Type:	double precision	

• regr_r2(Y,	X)	
Returns	square	of	the	correlation	coefficient	of	the	two	entered	numbers.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 Argument	Type(s):	double precision	
Return	Type:	double precision	

• regr_slope(Y,	X)	
Returns	slope	of	the	least-squares-fit	linear	equation	determined	by	the	(X,	Y)	pairs.	

	 Argument	Type(s):	double precision	
Return	Type:	double precision	

• regr_sxx(Y,	X)	
Returns	sum(X^2)	-	sum(X)^2/N	(“sum	of	squares”	of	the	independent	variable).	

	 Argument	Type(s):	double precision	
Return	Type:	double precision	

• regr_sxy(Y,	X)	
Returns	sum(XY)	-	sum(X)		sum(Y)/N	(“sum	of	products”	of	independent	times	
dependent	variable).	

	 Argument	Type(s):	double precision	
Return	Type:	double precision	

• regr_syy(Y,	X)	
Returns	sum(Y^2)	-	sum(Y)^2/N	(“sum	of	squares”	of	the	dependent	variable).	

	 Argument	Type(s):	double precision	
Return	Type:	double precision	

• stddev(expression)	
Returns	historical	alias	for	stddev_samp.	

	 Argument	Type(s):	smallint, int, bigint, real, double precision, or
numeric	
Return	Type:	double precision for floating-point arguments, otherwise
numeric	

• stddev_pop(expression)	
Returns	population	standard	deviation	of	the	input	values.	

	 Argument	Type(s):	smallint, int, bigint, real, double precision, or
numeric	
Return	Type:	double precision for floating-point arguments, otherwise
numeric	

• stddev_samp(expression)	
Returns	sample	standard	deviation	of	the	input	values.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 Argument	Type(s):	smallint, int, bigint, real, double precision, or
numeric	
Return	Type:	double precision for floating-point arguments, otherwise
numeric	

• variance(expression)	
Returns	historical	alias	for	var_samp.	

	 Argument	Type(s):	smallint, int, bigint, real, double precision, or
numeric	
Return	Type:	double precision for floating-point arguments, otherwise
numeric	

• var_pop(expression)	
Returns	population	variance	of	the	input	values	(square	of	the	population	standard	
deviation).	

	 Argument	Type(s):	smallint, int, bigint, real, double precision, or
numeric	
Return	Type:	double precision for floating-point arguments, otherwise
numeric	

• var_samp(expression)	
Returns	sample	variance	of	the	input	values	(square	of	the	sample	standard	deviation).	

	 Argument	Type(s):	smallint, int, bigint, real, double precision, or
numeric	
Return	Type:	double precision for floating-point arguments, otherwise
numeric	

• mode()	WITHIN	GROUP	(ORDER	BY	sort_expression)	
Returns	the	most	frequent	input	value	(arbitrarily	choosing	one	if	there	are	multiple	
equally-frequent	results).	

	 Argument	Type(s):	any sortable type	
Return	Type:	same as sort expression	

• percentile_cont(fraction)	WITHIN	GROUP	(ORDER	BY	sort_expression)	
Returns	a	value	corresponding	to	the	specified	fraction	in	the	ordering,	interpolating	
between	adjacent	input	items	if	needed.	

	 Argument	Type(s):	double precision or interval	
Return	Type:	same as sort expression	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• percentile_cont(fractions)	WITHIN	GROUP	(ORDER	BY	sort_expression)	
Returns	an	array	of	results	matching	the	shape	of	the	fractions	parameter,	with	each	
non-null	element	replaced	by	the	value	corresponding	to	that	percentile	

	 Argument	Type(s):	double precision or interval	
Return	Type:	array of sort expression's type	

• percentile_disc(fraction)	WITHIN	GROUP	(ORDER	BY	sort_expression)	
Returns	the	first	input	value	whose	position	in	the	ordering	equals	or	exceeds	the	
specified	fraction.	

	 Argument	Type(s):	any sortable type	
Return	Type:	same as sort expression	

• percentile_disc(fractions)	WITHIN	GROUP	(ORDER	BY	sort_expression)	
Returns	an	array	of	results	matching	the	shape	of	the	fractions	parameter,	with	each	
non-null	element	replaced	by	the	input	value	corresponding	to	that	percentile.	

	 Argument	Type(s):	any sortable type	
Return	Type:	array of sort expression's type	

• rank(args)	WITHIN	GROUP	(ORDER	BY	sorted_args)	
Returns	rank	of	the	argument,	with	gaps	for	duplicate	rows.	

	 Argument	Type(s):	VARIADIC "any"	
Return	Type:	bigint	

• dense_rank(args)	WITHIN	GROUP	(ORDER	BY	sorted_args)	
Returns	rank	of	the	argument,	without	gaps	for	duplicate	rows.	

	 Argument	Type(s):	VARIADIC "any"	
Return	Type:	bigint	

• percent_rank(args)	WITHIN	GROUP	(ORDER	BY	sorted_args)	
Returns	relative	rank	of	the	argument,	ranging	from	0	to	1.	

	 Argument	Type(s):	VARIADIC "any"	
Return	Type:	double precision	

• cume_dist(args)	WITHIN	GROUP	(ORDER	BY	sorted_args)	
Returns	relative	rank	of	the	argument,	ranging	from	1/N	to	1.	

	 Argument	Type(s):	VARIADIC "any"	
Return	Type:	double precision	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• GROUPING(args...)	
Returns	integer	bit	mask	indicating	which	arguments	are	not	being	included	in	the	
current	grouping	set.	

	 Return	Type:	integer	

Window Functions

• row_number()	
Returns	the	number	of	the	current	row	within	its	partition,	counting	from	1.	

	 Return	Type:	bigint	

• rank()	
Returns	rank	of	the	current	row	with	gaps;	same	as	row_number	of	its	first	peer.	

	 Return	Type:	bigint	

• dense_rank()	
Returns	rank	of	the	current	row	without	gaps;	this	function	counts	peer	groups.	

	 Return	Type:	bigint	

• percent_rank()	
Returns	relative	rank	of	the	current	row:	(rank	-	1)/(total	partition	rows	-	1).	

	 Return	Type:	double precision	

• cume_dist()	
Returns	cumulative	distribution:	(number	of	partition	rows	preceding	or	peer	with	
current	row)/total	partition	rows.	

	 Return	Type:	double precision	

• ntile(num_buckets	integer)	
Returns	integer	ranging	from	1	to	the	argument	value,	dividing	the	partition	as	equally	
as	possible.	

	 Return	Type:	integer	

• lag(value	anyelement	[,	offset	integer	[,	default	anyelement]])	
Returns	value	evaluated	at	the	row	that	is	offset	rows	before	the	current	row	within	
the	partition;	if	there	is	no	such	row,	instead	return	default	(which	must	be	of	the	
same	type	as	value).	Both	offset	and	default	are	evaluated	with	respect	to	the	current	
row.	If	omitted,	offset	defaults	to	1	and	default	to	null.	

	 Return	Type:	same type as value	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• lead(value	anyelement	[,	offset	integer	[,	default	anyelement]])	
Returns	value	evaluated	at	the	row	that	is	offset	rows	after	the	current	row	within	the	
partition;	if	there	is	no	such	row,	instead	return	default	(which	must	be	of	the	same	
type	as	value).	Both	offset	and	default	are	evaluated	with	respect	to	the	current	row.	If	
omitted,	offset	defaults	to	1	and	default	to	null.	

	 Return	Type:	same type as value	

• first_value(value	any)	
Returns	the	value	evaluated	at	the	row	that	is	the	first	row	of	the	window	frame.	

	 Return	Type:	same type as value	

• last_value(value	any)	
Returns	the	value	evaluated	at	the	row	that	is	the	last	row	of	the	window	frame.	

	 Return	Type:	same type as value	

• nth_value(value	any,	nth	integer)	
Returns	the	value	evaluated	at	the	row	that	is	the	nth	row	of	the	window	frame	
(counting	from	1);	null	if	there	is	no	such	row.	

	 Return	Type:	same type as value	

System Information Functions

• current_catalog	
Name	of	current	database	(called	“catalog”	in	the	SQL	standard).	

	 SELECT current_catalog;	
	
Result:	
 current_database 	

 test	
 (1 row)	

• current_database()	
Returns	name	of	current	database.	

	 SELECT current_database();	
	
Result:	
 current_database 	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 test	
 (1 row)	

• current_query()	
Returns	text	of	the	currently	executing	query,	as	submitted	by	the	client	(might	
contain	more	than	one	statement).	

	 SELECT current_query();	
	
Result:	
 current_query 	

 SELECT current_query();	
 (1 row)	

• current_role	
Returns	equivalent	to	current_user.	

	 SELECT current_role;	
	
Result:	
 current_user 	

 agens	
 (1 row) 	

• current_schema[()]	
Returns	name	of	current	schema.	

	 SELECT current_schema();	
	
Result:	
 current_schema 	

 public	
 (1 row)	

• current_schemas(boolean)	
Returns	names	of	schemas	in	search	path,	optionally	including	implicit	schemas.	

	 SELECT current_schemas(true);	
	
Result:	
 current_schemas 	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 {pg_catalog,public}	
 (1 row)	

• current_user	
Returns	user	name	of	current	execution	context.	

	 SELECT current_user;	
	
Result:	
 current_user 	

 agens	
 (1 row)	

• inet_client_addr()	
Returns	address	of	the	remote	connection.	

	 SELECT inet_client_addr();	
	
Result:	
 inet_client_addr	

 ::1	
 (1 row)	

• inet_client_port()	
Returns	port	of	the	remote	connection.	

	 SELECT inet_client_port();	
	
Result:	
 inet_client_port 	

 64427 	
 (1 row)	

• inet_server_addr()	
Returns	address	of	the	local	connection.	

	 SELECT inet_server_addr();	
	
Result:	
 inet_server_addr 	

 ::1	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• inet_server_port()	
Returns	port	of	the	local	connection.	

	 SELECT inet_server_port();	
	
Result:	
 inet_server_port 	

 5432	
 (1 row)	

• pg_backend_pid()	
Returns	the	process	ID	of	the	server	process	attached	to	the	current	session.	

	 SELECT pg_backend_pid();	
	
Result:	
 pg_backend_pid 	

 61675	
 (1 row)	

• pg_blocking_pids(int)	
Returns	the	process	ID(s)	that	are	blocking	specified	server	process	ID.	

	 SELECT pg_blocking_pids(61675);	
	
Result:	
 pg_blocking_pids 	

 {}	
 (1 row)	

• pg_conf_load_time()	
Returns	configuration	load	time.	

	 SELECT pg_conf_load_time();	
	
Result:	
 pg_conf_load_time 	

 2017-10-18 13:36:51.99984+09	
 (1 row)	

• pg_my_temp_schema()	
Returns	OID	of	session's	temporary	schema,	or	0	if	none.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT pg_my_temp_schema();	
	
Result:	
 pg_my_temp_schema 	

 0	
 (1 row)	

• pg_is_other_temp_schema(oid)	
Returns	whether	schema	is	another	session's	temporary	schema.	

	 SELECT pg_is_other_temp_schema(61675);	
	
Result:	
 pg_is_other_temp_schema 	

 f	
 (1 row)	

• pg_listening_channels()	
Returns	channel	names	that	the	session	is	currently	listening	on.	

	 SELECT pg_listening_channels();	
	
Result:	
 pg_listening_channels 	

 (0 row) 	

• pg_notification_queue_usage()	
Returns	fraction	of	the	asynchronous	notification	queue	currently	occupied	(0-1).	

	 SELECT pg_notification_queue_usage();	
	
Result:	
 pg_notification_queue_usage 	

 0	
 (1 row)	

• pg_postmaster_start_time()	
Returns	server	start	time.	

	 SELECT pg_postmaster_start_time();	
	
Result:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 pg_postmaster_start_time 	

 2017-10-18 13:36:52.019037+09	
 (1 row)	

• pg_trigger_depth()	
Returns	current	nesting	level	of	PostgreSQL	triggers	(0	if	not	called,	directly	or	
indirectly,	from	inside	a	trigger).	

	 SELECT pg_trigger_depth();	
	
Result:	
 pg_trigger_depth 	

 0	
 (1 row)	

• session_user	
Returns	session	user	name.	

	 SELECT session_user;	
	
Result:	
 session_user 	

 agens	
 (1 row)	

• user	
Returns	the	equivalent	to	current_user.	

	 SELECT user;	
	
Result:	
 current_user 	

 agens	
 (1 row)	

• version()	
Returns	AgensGraph's	version	info.	

	 SELECT version();	
	
Result:	
 version 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 PostgreSQL 9.6.2 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.4.7 201
20313 	
 (Red Hat 4.4.7-17), 64-bit	

 (1 r
ow)	

• has_any_column_privilege(user,	table,	privilege)	
Returns	a	boolean	value	indicating	whether	user	has	the	same	privileges	on	all	
columns	of	table	as	others.	

	 SELECT has_any_column_privilege('agens', 'myschema.mytable', 'SELECT');
 	
	
Result: 	
 has_any_column_privilege 	

 t	
 (1 row)	

• has_any_column_privilege(table,	privilege)	
Returns	whether	current	user	has	privilege	for	all	columns	of	table.	

	 SELECT has_any_column_privilege('myschema.mytable', 'SELECT');	
	
Result:	
 has_any_column_privilege 	

 t 	
 (1 row)	

• has_column_privilege(user,	table,	column,	privilege)	
Returns	whether	user	has	privilege	for	table's	column.	

	 SELECT has_column_privilege('agens', 'myschema.mytable', 'col1', 'SELECT
');	
	
Result:	
 has_column_privilege 	

 t	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• has_column_privilege(table,	column,	privilege)	
Returns	whether	current	user	has	privilege	for	table's	column.	

	 SELECT has_column_privilege('myschema.mytable', 'col1', 'SELECT');	
	
Result:	
 has_column_privilege 	

 t	
 (1 row)	

• has_database_privilege(user,	database,	privilege)	
Returns	whether	user	has	privilege	for	database.	

	 SELECT has_database_privilege('agens', 'test', 'connect');	
	
Result:	
 has_database_privilege 	

 t	
 (1 row)	

• has_database_privilege(database,	privilege)	
Returns	whether	current	user	has	privilege	for	database.	

	 SELECT has_database_privilege('test', 'connect');	
	
Result:	
 has_database_privilege 	

 t	
 (1 row)	

• has_foreign_data_wrapper_privilege(user,	fdw,	privilege)	
Returns	whether	user	has	privilege	for	foreign-data	wrapper.	

	 CREATE EXTENSION postgres_fdw;	
	
SELECT has_foreign_data_wrapper_privilege('agens', 'postgres_fdw', 'usage
');	
	
Result:	
 has_foreign_data_wrapper_privilege 	

 t	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• has_foreign_data_wrapper_privilege(fdw,	privilege)	
Returns	whether	current	user	has	privilege	for	foreign-data	wrapper.	

	 SELECT has_foreign_data_wrapper_privilege('postgres_fdw', 'usage');	
	
Result:	
 has_foreign_data_wrapper_privilege 	

 t	
 (1 row)	

• has_function_privilege(user,	function,	privilege))	
Returns	whether	user	has	privilege	for	function.	

	 SELECT has_function_privilege('agens', 'getfoo()', 'execute');	
	
Result:	
 has_function_privilege 	

 t	
 (1 row)	

• has_function_privilege(function,	privilege)	
Returns	whether	current	user	has	privilege	for	function.	

	 SELECT has_function_privilege('getfoo()', 'execute');	
	
Result:	
 has_function_privilege 	

 t	
 (1 row)	

• has_language_privilege(user,	language,	privilege)	
Returns	whether	the	user	has	privilege	for	language.	

	 SELECT has_language_privilege('agens', 'c', 'usage');	
	
Result:	
 has_language_privilege 	

 t	
 (1 row)	

• has_language_privilege(language,	privilege)	
Returns	whether	current	user	has	privilege	for	language.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT has_language_privilege('c', 'usage');	
	
Result:	
 has_language_privilege 	

 t	
 (1 row) 	

• has_schema_privilege(user,	schema,	privilege)	
Returns	whether	user	has	privilege	for	schema.	

	 SELECT has_schema_privilege('agens', 'myschema', 'usage');	
	
Result:	
 has_schema_privilege 	

 t	
 (1 row)	

• has_schema_privilege(schema,	privilege)	
Returns	whether	current	user	has	privilege	for	schema.	

	 SELECT has_schema_privilege('myschema', 'usage');	
	
Result:	
 has_schema_privilege 	

 t	
 (1 row)	

• has_sequence_privilege(user,	sequence,	privilege)	
Returns	whether	the	user	has	privilege	for	sequence.	

	 SELECT has_sequence_privilege('agens', 'serial', 'usage');	
	
 Result:	
 has_sequence_privilege 	

 t	
 (1 row)	

• has_sequence_privilege(sequence,	privilege)	
Returns	whether	user	has	privilege	for	sequence.	

	 SELECT has_sequence_privilege('serial', 'usage');	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 Result:	
 has_sequence_privilege 	

 t	
 (1 row)	

• has_server_privilege(user,	server,	privilege)	
Returns	whether	user	has	privilege	for	server.	

	 CREATE SERVER app_database_server	
FOREIGN DATA WRAPPER postgres_fdw	
OPTIONS (host '127.0.0.1', dbname 'agens');	
	
SELECT has_server_privilege('agens', 'app_database_server', 'usage');	
	
Result:	
 has_server_privilege 	

 t	
 (1 row)	

• has_server_privilege(server,	privilege)	
Returns	whether	current	user	has	privilege	for	server.	

	 SELECT has_server_privilege('app_database_server', 'usage');	
	
Result:	
 has_server_privilege 	

 t	
 (1 row)	

• has_table_privilege(user,	table,	privilege)	
Returns	whether	user	has	privilege	for	table.	

	 SELECT has_table_privilege('agens', 'myschema.mytable', 'SELECT');	
	
Result: 	
 has_table_privilege 	

 t	
 (1 row)	

• has_table_privilege(table,	privilege)	
Returns	whether	current	user	has	privilege	for	table.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT has_table_privilege('myschema.mytable', 'SELECT');	
	
Result: 	
 has_table_privilege 	

 t	
 (1 row)	

• has_tablespace_privilege(user,	tablespace,	privilege)	
Returns	whether	user	has	privilege	for	tablespace.	

	 SELECT has_tablespace_privilege('agens', 'pg_default', 'create');	
	
Result:	
 has_tablespace_privilege 	

 t	
 (1 row)	

• has_tablespace_privilege(tablespace,	privilege)	
Returns	whether	current	user	has	privilege	for	tablespace.	

	 SELECT has_tablespace_privilege('pg_default', 'create');	
	
Result:	
 has_tablespace_privilege 	

 t	
 (1 row)	

• has_type_privilege(user,	type,	privilege)	
Returns	whether	user	has	privilege	for	type.	

	 SELECT has_type_privilege('agens', 'rainbow', 'usage');	
	
Result: 	
 has_type_privilege 	

 t	
 (1 row)	

• has_type_privilege(type,	privilege)	
Returns	whether	current	user	has	privilege	for	type.	

	 SELECT has_type_privilege('rainbow', 'usage');	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result: 	
 has_type_privilege 	

 t	
 (1 row)	

• pg_has_role(user,	role,	privilege)	
Returns	whether	user	has	privilege	for	role.	

	 SELECT pg_has_role('agens', 'agens', 'usage');	
	
Result: 	
 pg_has_role 	

 t	
 (1 row)	

• pg_has_role(role,	privilege)	
Returns	whether	current	user	has	privilege	for	role.	

	 SELECT pg_has_role('agens', 'usage');	
	
Result: 	
 pg_has_role 	

 t	
 (1 row)	

• row_security_active(table)	
Returns	whether	current	user	has	row	level	security	active	for	table.	

	 SELECT row_security_active('myschema.mytable');	
	
Result:	
 row_security_active 	

 f	
 (1 row)	

• pg_collation_is_visible(collation_oid)	
Returns	whether	collation	is	visible	in	search	path.	

	 SELECT pg_collation_is_visible(100);	
	
Result:	
 pg_collation_is_visible 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 t	
 (1 row) 	

• pg_conversion_is_visible(conversion_oid)	
Returns	whether	conversion	is	visible	in	search	path.	

	 SELECT pg_conversion_is_visible(12830);	
	
Result:	
 pg_conversion_is_visible 	

 t	
 (1 row) 	

• pg_function_is_visible(function_oid)	
Returns	whether	function	is	visible	in	search	path.	

	 SELECT pg_function_is_visible(16716);	
	
Result:	
 pg_function_is_visible 	

 t 	
 (1 row) 	

• pg_opclass_is_visible(opclass_oid)	
Returns	whether	opclass	is	visible	in	search	path.	

	 SELECT pg_opclass_is_visible(10007);	
	
Result:	
 pg_opclass_is_visible 	

 t	
 (1 row) 	

• pg_operator_is_visible(operator_oid)	
Returns	whether	operator	is	visible	in	search	path.	

	 SELECT pg_operator_is_visible(15);	
	
Result: 	
 pg_operator_is_visible 	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 t	
 (1 row) 	

• pg_opfamily_is_visible(opclass_oid)	
Returns	whether	opfamily	is	visible	in	search	path.	

	 SELECT pg_opfamily_is_visible(421);	
	
Result: 	
 pg_opfamily_is_visible 	

 t	
 (1 row) 	

• pg_table_is_visible(table_oid)	
Returns	whether	table	is	visible	in	search	path.	

	 SELECT pg_table_is_visible(16553);	
	
Result:	
 pg_table_is_visible 	

 t	
 (1 row) 	

• pg_ts_config_is_visible(config_oid)	
Returns	whether	text	search	configuration	is	visible	in	search	path.	

	 SELECT pg_ts_config_is_visible(3748);	
	
Result:	
 pg_ts_config_is_visible 	

 t	
 (1 row) 	

• pg_ts_dict_is_visible(dict_oid)	
Returns	whether	text	search	dictionary	is	visible	in	search	path.	

	 SELECT pg_ts_dict_is_visible(3765);	
	
Result:	
 pg_ts_dict_is_visible 	

 t	
 (1 row) 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• pg_ts_parser_is_visible(parser_oid)	
Returns	whether	text	search	parser	is	visible	in	search	path.	

	 SELECT pg_ts_parser_is_visible(3722);	
	
Result:	
 pg_ts_parser_is_visible 	

 t	
 (1 row) 	

• pg_ts_template_is_visible(template_oid)	
Returns	whether	text	search	template	is	visible	in	search	path.	

	 SELECT pg_ts_template_is_visible(3727);	
	
Result:	
 pg_ts_template_is_visible 	

 t	
 (1 row) 	

• pg_type_is_visible(type_oid)	
Returns	whether	type	or	domain	is	visible	in	search	path.	

	 SELECT pg_type_is_visible(16);	
	
Result:	
 pg_type_is_visible 	

 t	
 (1 row) 	

• format_type(type_oid,	typemod)	
Gets	the	name	of	a	data	type.	

	 SELECT format_type(16, 1);	
	
Result:	
 format_type 	

 boolean	
 (1 row) 	

• pg_get_constraintdef(constraint_oid)	
Gets	definition	of	a	constraint.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT pg_get_constraintdef(13096);	
	
Result:	
 pg_get_constraintdef 	

 CHECK ((VALUE >= 0))	
 (1 row) 	

• pg_get_constraintdef(constraint_oid,	pretty_bool)	
Gets	definition	of	a	constraint.	

	 SELECT pg_get_constraintdef(13096, true);	
	
Result:	
 pg_get_constraintdef 	

 CHECK ((VALUE >= 0))	
 (1 row) 	

• pg_get_functiondef(func_oid)	
Gets	definition	of	a	function.	

	 SELECT pg_get_functiondef(16716);	
	
Result:	
 pg_get_functiondef 	
--	
 CREATE OR REPLACE FUNCTION public.getfoo()+	
 ...	
 (1 row) 	

• pg_get_function_arguments(func_oid)	
Gets	argument	list	of	function's	definition	(with	default	values).	

	 SELECT pg_get_function_arguments(16739);	
	
Result:	
 pg_get_function_arguments 	

 double precision, double precision	
 (1 row) 	

• pg_get_function_identity_arguments(func_oid)	
Gets	argument	list	to	identify	a	function	(without	default	values).	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT pg_get_function_identity_arguments(16739);	
	
Result:	
 pg_get_function_identity_arguments 	

 double precision, double precision	
 (1 row) 	

• pg_get_function_result(func_oid)	
Gets	RETURNS	clause	for	function.	

	 SELECT pg_get_function_result(16739);	
	
Result:	
 pg_get_function_result 	

 float8_range	
 (1 row) 	

• pg_get_indexdef(index_oid)	
Gets	CREATE INDEX	command	for	index.	

	 SELECT pg_get_indexdef(828);	
	
 Result:	
 pg_get_indexdef

 CREATE UNIQUE INDEX pg_default_acl_oid_index ON pg_default_acl USING btr
ee (oid)	

 (1 row) 	

• pg_get_indexdef(index_oid,	column_no,	pretty_bool)	
Gets	CREATE	INDEX	command	for	index,	or	definition	of	just	one	index	column	when	
column_no	is	not	zero.	

	 SELECT pg_get_indexdef(828, 1, true);	
	
Result:	
 pg_get_indexdef 	

 oid	
 (1 row) 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• pg_get_keywords()	
Gets	list	of	SQL	keywords	and	their	categories.	

	 SELECT pg_get_keywords();	
	
Result:	
 pg_get_keywords 	

 (abort,U,unreserved)	
 (absolute,U,unreserved)	
 ...	
 (434 row) 	

• pg_get_ruledef(rule_oid)	
Gets	CREATE RULE	command	for	rule.	

	 SELECT pg_get_ruledef(11732);	
	
Result:	
 pg_get_ruledef 	

 CREATE RULE "_RETURN" AS 	
 ...	
 (1 row) 	

• pg_get_ruledef(rule_oid,	pretty_bool)	
Gets	CREATE RULE	command	for	rule.	

	 SELECT pg_get_ruledef(11732, true);	
	
Result:	
 pg_get_ruledef 	

 CREATE RULE "_RETURN" AS 	
 ...	
 (1 row) 	

• pg_get_serial_sequence(table_name,	column_name)	
Returns	the	name	of	the	sequence	using	serial,	smallserial,	and	bigserial	columns.	

	 SELECT pg_get_serial_sequence('serial_t', 'col1');	
	
Result:	
 pg_get_serial_sequence 	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 public.serial_t_col1_seq	
 (1 row) 	

• pg_get_triggerdef(trigger_oid)	
Gets	CREATE [CONSTRAINT] TRIGGER	command	for	trigger.	

	 SELECT pg_get_triggerdef(16887);	
	
Result:	
 pg_get_triggerdef 	

 CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE ON messages 	
 FOR EACH ROW EXECUTE PROCEDURE 	
 tsvector_update_trigger_column('tsv', 'configcol', 'title', 'body')	
 (1 row)
 	

• pg_get_triggerdef(trigger_oid,	pretty_bool)	
Gets	CREATE [CONSTRAINT] TRIGGER	command	for	trigger.	

	 SELECT pg_get_triggerdef(16887, true);	
	
Result:	
 pg_get_triggerdef 	

 CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE ON messages 	
 FOR EACH ROW EXECUTE PROCEDURE 	
 tsvector_update_trigger_column('tsv', 'configcol', 'title', 'body')	
 (1 row)
 	

• pg_get_userbyid(role_oid)	
Gets	role	name	with	given	OID.	

	 SELECT pg_get_userbyid(13096);	
	
Result:	
 pg_get_userbyid 	

 agens	
 (1 row) 	

• pg_get_viewdef(view_oid)	
Gets	underlying	SELECT	command	for	view	or	mview.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT pg_get_viewdef(17046);	
	
Result:	
 pg_get_viewdef 	

 SELECT pg_class.relname, +	
 pg_class.relnamespace, +	
 ...	
 FROM pg_class;	
 (1 row) 	

• pg_get_viewdef(view_oid,	pretty_bool)	
Gets	underlying	SELECT	command	for	view	or	mview.	

	 SELECT pg_get_viewdef(17046, true);	
	
Result:	
 pg_get_viewdef 	

 SELECT pg_class.relname, +	
 pg_class.relnamespace, +	
 ...	
 FROM pg_class;	
 (1 row) 	

• pg_get_viewdef(view_oid,	wrap_column_int)	
Gets	underlying	SELECT	command	for	view	or	mview;	lines	with	fields	are	wrapped	to	
specified	number	of	columns.	

	 SELECT pg_get_viewdef(17046,50);	
	
Result:	
 pg_get_viewdef 	

 SELECT pg_class.relname, pg_class.relnamespace, +	
 pg_class.reltype, pg_class.reloftype, +	
 pg_class.relowner, pg_class.relam, +	
 pg_class.relfilenode, pg_class.reltablespace, +	
 pg_class.relpages, pg_class.reltuples, +	
 pg_class.relallvisible, pg_class.reltoastrelid,+	
 pg_class.relhasindex, pg_class.relisshared, +	
 pg_class.relpersistence, pg_class.relkind, +	
 pg_class.relnatts, pg_class.relchecks, +	
 pg_class.relhasoids, pg_class.relhaspkey, +	
 pg_class.relhasrules, pg_class.relhastriggers, +	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 pg_class.relhassubclass, +	
 pg_class.relrowsecurity, +	
 pg_class.relforcerowsecurity, +	
 pg_class.relispopulated, pg_class.relreplident,+	
 pg_class.relfrozenxid, pg_class.relminmxid, +	
 pg_class.relacl, pg_class.reloptions +	
 FROM pg_class;	
 (1 row) 	

• pg_index_column_has_property(index_oid,	column_no,	prop_name)	
Tests	whether	an	index	column	has	a	specified	property.	

	 SELECT pg_index_column_has_property(17134, 1, 'orderable');	
	
Result: 	
 pg_index_column_has_property 	

 t	
 (1 row)	

• pg_index_has_property(index_oid,	prop_name)	
Tests	whether	an	index	has	a	specified	property.	

	 SELECT pg_index_has_property(17134, 'clusterable');	
	
Result:	
 pg_index_has_property 	

 t	
 (1 row)	

• pg_indexam_has_property(am_oid,	prop_name)	
Tests	whether	an	index	access	method	has	a	specified	property.	

	 SELECT pg_indexam_has_property(403, 'can_order');	
	
Result:	
 pg_indexam_has_property 	

 t	
 (1 row)	

• pg_options_to_table(reloptions)	
Gets	name/value	pairs	of	the	set	of	storage	option.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT pg_options_to_table(reloptions) FROM pg_class; 	
	
Result:	
 pg_options_to_table 	

 (security_barrier,true)	
 (1 row) 	

• pg_tablespace_databases(tablespace_oid)	
Gets	the	set	of	database	OIDs	that	have	objects	in	the	tablespace.	

	 SELECT pg_tablespace_databases(1663);	
	
Result:	
 pg_tablespace_databases 	

 1	
 13372	
 13373	
 16384	
 16482	
 (5 row) 	

• pg_tablespace_location(tablespace_oid)	
Gets	the	path	in	the	file	system	that	this	tablespace	is	located	in.	

	 SELECT pg_tablespace_location(1663);	
	
Result:	
 pg_tablespace_location 	

 /home/agens/AgensGraph/db_cluster	
 (1 row) 	

• pg_typeof(any)	
Gets	the	data	type	of	any	value.	

	 SELECT pg_typeof(1);	
	
Result:	
 pg_typeof 	

 integer	
 (1 row) 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• collation	for	(any)	
Gets	the	collation	of	the	argument.	

	 SELECT collation for ('foo' COLLATE "de_DE");	
	
Result:	
 pg_collation_for 	

 "de_DE"	
 (1 row) 	

• pg_describe_object(catalog_id,	object_id,	object_sub_id)	
Gets	description	of	a	database	object.	

	 SELECT pg_describe_object(1255, 16716, 0);	
	
Result:	
 pg_describe_object 	

 function 16716	
 (1 row) 	

• pg_identify_object(catalog_id	oid,	object_id	oid,	object_sub_id	integer)	
Gets	identity	info	of	a	database	object.	

	 SELECT pg_identify_object(1255, 16716, 0);	
	
Result:	
 pg_identify_object 	

 (function,public,,"public.getfoo()")	
 (1 row) 	

• pg_identify_object_as_address(catalog_id	oid,	object_id	oid,	object_sub_id	integer)	
Gets	external	representation	of	a	database	object's	address.	

	 SELECT pg_identify_object_as_address(1255, 16716, 0);	
	
Result:	
 pg_identify_object_as_address 	

 (function,"{public,getfoo}",{})	
 (1 row) 	

• pg_get_object_address(type	text,	name	text[],	args	text[])	
Gets	address	of	a	database	object,	from	its	external	representation.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT pg_get_object_address('type', '{public.comp}', '{}');	
	
Result:	
 pg_get_object_address 	

 (1247,17063,0)	
 (1 row) 	

• col_description(table_oid,	column_number)	
Gets	comment	for	a	table	column.	

	 SELECT col_description(17064, 1);	
	
Result:	
 col_description 	

 code_number	
 (1 row) 	

• obj_description(object_oid,	catalog_name)	
Gets	comment	for	a	database	object.	

	 SELECT obj_description(16887, 'pg_trigger');	
	
Result:	
 obj_description 	

 comment on trigger	
 (1 row) 	

• obj_description(object_oid)	
Gets	comment	for	a	database	object	(no	longer	used).	

	 SELECT obj_description(16887);	
	
Result:	
 obj_description 	

 comment on trigger	
 (1 row) 	

• shobj_description(object_oid,	catalog_name)	
Gets	comment	for	a	shared	database	object.	

	 SELECT shobj_description(1262,'pg_database');	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result: 	
 shobj_description 	

 (1 row)	

• txid_current()	
Gets	current	transaction	ID,	assigning	a	new	one	if	the	current	transaction	does	not	
have	one.	

	 SELECT txid_current();	
	
Result:	
 txid_current 	

 2061	
 (1 row) 	

• txid_current_snapshot()	
Gets	current	snapshot.	

	 SELECT txid_current_snapshot();	
	
Result:	
 txid_current_snapshot 	

 2062:2062:	
 (1 row) 	

• txid_snapshot_xip(txid_snapshot)	
Gets	in-progress	transaction	IDs	in	snapshot.	

	 SELECT txid_snapshot_xip('2095:2095:');	
	
Result:	
 txid_snapshot_xip 	

 (1 row)	

• txid_snapshot_xmax(txid_snapshot)	
Gets	xmax	of	snapshot.	

	 SELECT txid_snapshot_xmax('2094:2095:');	
	
Result:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 txid_snapshot_xmax 	

 2095	
 (1 row)	

• txid_snapshot_xmin(txid_snapshot)	
Gets	xmin	of	snapshot.	

	 SELECT txid_snapshot_xmin('2094:2095:');	
	
Result:	
 txid_snapshot_xmin 	

 2094	
 (1 row)	

• txid_visible_in_snapshot(bigint,	txid_snapshot)	
Returns	whether	transaction	ID	is	visible	in	snapshot	(do	not	use	with	subtransaction	
ids).	

	 SELECT txid_visible_in_snapshot(2099, '2100:2100:');	
	
Result:	
 txid_visible_in_snapshot 	

 t	
 (1 row)	

• pg_xact_commit_timestamp(xid)	
Gets	commit	timestamp	of	a	transaction	(track_commit_timestamp	parameter	should	
be	set	to	on).	

	 SELECT pg_xact_commit_timestamp('2097'::xid);	
	
Result:	
 pg_xact_commit_timestamp 	

 2017-10-18 13:38:09.738211+09	
 (1 row)	

• pg_last_committed_xact()	
Gets	transaction	ID	and	commit	timestamp	of	latest	committed	transaction	
(track_commit_timestamp	parameter	should	be	set	to	on).	

	 SELECT pg_last_committed_xact();	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result:	
 pg_last_committed_xact 	
--	
 (2097,"2017-10-18 13:38:09.738211+09")	
 (1 row)	

• pg_control_checkpoint()	
Returns	information	about	current	checkpoint	state.	

	 SELECT pg_control_checkpoint();	
	
Result:	
 pg_control_checkpoint

 (0/1D4B0D0,0/1D4B038,0/1D4B0D0,000000010000000000000001,	
 1,1,t,0:2063,24576,1,0,1751,1,0,1,1,0,0,"2017-10-16 16:26:21+09")	
 (1 row) 	

• pg_control_system()	
Returns	information	about	current	control	file	state.	

	 SELECT pg_control_system();	
	
Result:	
 pg_control_system 	
--	
 (960,201608131,6469891178207434037,"2017-10-16 16:26:21+09")	
 (1 row) 	

• pg_control_init()	
Returns	information	about	cluster	initialization	state.	

	 SELECT pg_control_init();	
	
Result:	
 pg_control_init 	

 (8,8192,131072,8192,16777216,64,32,1996,2048,t,t,t,0)	
 (1 row) 	

• pg_control_recovery()	
Returns	information	about	recovery	state.	

	 SELECT pg_control_recovery();	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Result:	
 pg_control_recovery 	

 (0/0,0,0/0,0/0,f)	
 (1 row) 	

System Administration Functions

• current_setting(setting_name	[,	missing_ok])	
Gets	current	value	of	setting.	

	 SELECT current_setting('datestyle');	
	
Result:	
 current_setting 	

 ISO, YMD	
 (1 row) 	

• set_config(setting_name,	new_value,	is_local)	
Sets	parameter	and	returns	new	value.	

	 SELECT set_config('log_statement_stats', 'off', false);	
	
Result:	
 set_config 	

 off	
 (1 row) 	

• pg_cancel_backend(pid	int)	
Cancels	a	backend's	current	query.	This	is	also	allowed	if	the	calling	role	is	a	member	
of	the	role	whose	backend	is	being	canceled	or	the	calling	role	has	been	granted	
pg_signal_backend.	However,	only	superusers	can	cancel	superuser	backends.	

	 SELECT pg_cancel_backend(30819);	
Error: Cancel operation by user request. 	

• pg_reload_conf()	
Causes	server	processes	to	reload	their	configuration	files.	

	 SELECT pg_reload_conf();	
	
Result:	
 pg_reload_conf 	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 t	
 (1 row) 	

• pg_rotate_logfile()	
Signals	the	log-file	manager	to	switch	to	a	new	log	file	immediately	(This	works	only	
when	the	built-in	log	collector	is	running).	

	 SELECT pg_rotate_logfile();	
	
 pg_rotate_logfile 	

 f	
 (1 row) 	

• pg_terminate_backend(pid	int)	
Terminates	a	backend.	This	is	also	allowed	if	the	calling	role	is	a	member	of	the	role	
whose	backend	is	being	terminated	or	the	calling	role	has	been	granted	
pg_signal_backend.	However,	only	superusers	can	terminate	superuser	backends.	

	 SELECT pg_terminate_backend(30819);	
	
Result:	
Fatal error: Connection is terminated by an administrator request.	
 The server suddenly closed the connection.	
 This type of processing means the server was abruptly termin
ated	
 while or before processing the client's request.	
 The server connection has been lost. Attempt to reconnect: S
uccess.	

• pg_create_restore_point(name	text)	
Creates	a	named	point	for	performing	restore	(restricted	to	superusers	by	default,	but	
other	users	can	be	granted	EXECUTE	to	run	the	function).	

	 SELECT pg_create_restore_point('important_moment');	
	
Result:	
 pg_create_restore_point 	

 0/1D72DC0	
 (1 row)	

• pg_current_xlog_flush_location()	
Returns	the	transaction	log	flush	location.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT pg_current_xlog_flush_location();	
	
Result:	
 pg_current_xlog_flush_location 	

 0/1D72ED8	
 (1 row)	

• pg_current_xlog_insert_location()	
Returns	the	location	of	the	current	transaction	log	insert.	

	 SELECT pg_current_xlog_insert_location();	
	
Result:	
 pg_current_xlog_insert_location 	

 0/1D72ED8	
 (1 row)	

• pg_current_xlog_location()	
Returns	the	location	of	the	current	transaction	log	write.	

	 SELECT pg_current_xlog_location();	
	
Result:	
 pg_current_xlog_location 	

 0/1D72ED8	
 (1 row)	

• pg_start_backup(label	text	[,	fast	boolean	[,	exclusive	boolean]])	
Prepares	for	performing	on-line	backup	(restricted	to	superusers	by	default,	but	other	
users	can	be	granted	EXECUTE	to	run	the	function).	

	 SELECT pg_start_backup('my_backup', true, false);	
	
Result:	
 pg_start_backup 	

 0/2000028	
 (1 row)	

• pg_stop_backup()	
Finishes	performing	exclusive	on-line	backup	(restricted	to	superusers	by	default,	but	
other	users	can	be	granted	EXECUTE	to	run	the	function).	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT pg_stop_backup();	
	
Result:	
NOTICE: The pg_stop_backup operation is finished. 	
 All necessary WAL pieces have been archived. 	
 pg_stop_backup 	

 (0/50000F8,,)	
 (1 row) 	

• pg_stop_backup(exclusive	boolean)	
Finishes	performing	exclusive	or	non-exclusive	on-line	backup	(restricted	to	
superusers	by	default,	but	other	users	can	be	granted	EXECUTE	to	run	the	function).	

	 SELECT pg_stop_backup(false);	
	
Result:	
NOTICE: WAL archiving is not enabled; you must ensure that all required
WAL 	
 segments are copied through other means to complete the backup	
	
 pg_stop_backup

--	
 (0/3000088,"START WAL LOCATION: 0/2000028 (file 000000010000000000000002)
+	
 CHECKPOINT LOCATION: 0/2000060
 +	
 BACKUP METHOD: streamed
 +	
 BACKUP FROM: master
 +	
 START TIME: 2017-10-17 10:00:18 KST
 +	
 LABEL: my_backup
 +	
 ","17060 /home/agens/AgensGraph/db_cluster/data
 +	
 ")	
 (1 ro
w) 	

• pg_is_in_backup()	
Returns	true	if	an	on-line	exclusive	backup	is	still	in	progress.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT pg_is_in_backup();	
	
Result:	
 pg_is_in_backup 	

 t	
 (1 row) 	

• pg_backup_start_time()	
Gets	start	time	of	an	on-line	exclusive	backup	in	progress.	

	 SELECT pg_backup_start_time();	
	
Result:	
 pg_backup_start_time 	

 2017-10-17 10:29:26+09	
 (1 row) 	

• pg_switch_xlog()	
Forces	switch	to	a	new	transaction	log	file	(restricted	to	superusers	by	default,	but	
other	users	can	be	granted	EXECUTE	to	run	the	function).	

	 SELECT pg_switch_xlog();	
	
Result:	
 pg_switch_xlog 	

 0/9000120	
 (1 row) 	

• pg_xlogfile_name(location	pg_lsn)	
Converts	the	transaction	log	location	string	to	file	name.	

	 SELECT pg_xlogfile_name('0/9000028');	
	
Result:	
 pg_xlogfile_name 	

 000000010000000000000009	
 (1 row) 	

• pg_xlogfile_name_offset(location	pg_lsn)	
Converts	the	transaction	log	location	string	to	file	name	and	decimal	byte	offset	within	
file.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT pg_xlogfile_name_offset('0/9000028');	
	
Result:	
 pg_xlogfile_name_offset 	

 (000000010000000000000009,40)	
 (1 row) 	

• pg_xlog_location_diff(location	pg_lsn,	location	pg_lsn)	
Calculates	the	difference	between	two	transaction	log	locations.	

	 SELECT pg_xlog_location_diff('0/9000120', '0/9000028');	
	
Result:	
 pg_xlog_location_diff 	

 (1 row) 	

• pg_is_in_recovery()	
Returns	true	if	recovery	is	still	in	progress.	

	 SELECT pg_is_in_recovery();	
	
Result:	
 pg_is_in_recovery 	

 t 	
 (1 row) 	

• pg_last_xlog_receive_location()	
Gets	the	last	transaction	log	location	received	and	synced	to	disk	by	streaming	
replication.	While	streaming	replication	is	in	progress	this	will	increase	monotonically.	
If	recovery	has	completed	this	will	remain	static	at	the	value	of	the	last	WAL	record	
received	and	synced	to	disk	during	recovery.	If	streaming	replication	is	disabled,	or	if	
it	has	not	yet	started,	the	function	returns	NULL.	

	 SELECT pg_last_xlog_receive_location();	
	
Result:	
 pg_last_xlog_receive_location 	

 (1 row) 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• pg_last_xlog_replay_location()	
Gets	the	last	transaction	log	location	replayed	during	recovery.	If	recovery	is	still	in	
progress	this	will	increase	monotonically.	If	recovery	has	completed	then	this	value	
will	remain	static	at	the	value	of	the	last	WAL	record	applied	during	that	recovery.	
When	the	server	has	been	started	normally	without	recovery	the	function	returns	
NULL.	

	 SELECT pg_last_xlog_replay_location();	
	
Result:	
 pg_last_xlog_replay_location 	

 (1 row) 	

• pg_last_xact_replay_timestamp()	
Gets	timestamp	of	last	transaction	replayed	during	recovery.	This	is	the	time	at	which	
the	commit	or	abort	WAL	record	for	that	transaction	was	generated	on	the	primary.	If	
no	transactions	have	been	replayed	during	recovery,	this	function	returns	NULL.	
Otherwise,	if	recovery	is	still	in	progress	this	will	increase	monotonically.	If	recovery	
has	completed	then	this	value	will	remain	static	at	the	value	of	the	last	transaction	
applied	during	that	recovery.	When	the	server	has	been	started	normally	without	
recovery	the	function	returns	NULL.	

	 SELECT pg_last_xact_replay_timestamp();	
	
Result:	
 pg_last_xact_replay_timestamp 	

 (1 row) 	

• pg_export_snapshot()	
Saves	the	current	snapshot	and	returns	its	identifier.	

	 SELECT pg_export_snapshot();	
	
Result:	
 pg_export_snapshot 	

 00000816-1	
 (1 row)	

• pg_create_physical_replication_slot(slot_name	name	[,	immediately_reserve	boolean])	
Creates	a	new	physical	replication	slot	named	slot_name.	The	optional	second	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

parameter,	when	true,	specifies	that	the	LSN	for	this	replication	slot	be	reserved	
immediately;	otherwise	the	LSN	is	reserved	on	first	connection	from	a	streaming	
replication	client.	Streaming	changes	from	a	physical	slot	is	only	possible	with	the	
streaming-replication	protocol	(see	this	link	for	more	technical	info).	This	function	
corresponds	to	the	replication	protocol	command	CREATE_REPLICATION_SLOT ...
PHYSICAL.	

	 SELECT pg_create_physical_replication_slot('test_slot', 'true');	
	
Result:	
 pg_create_physical_replication_slot 	

 (test_slot,0/D000220)	
 (1 row)	

• pg_drop_replication_slot(slot_name	name)	
Drops	the	physical	or	logical	replication	slot	named	slot_name.	Same	as	replication	
protocol	command			
DROP_REPLICATION_SLOT.	

	 SELECT pg_drop_replication_slot('test_slot');	
	
Result:	
 pg_drop_replication_slot 	

 (1 row)	

• pg_create_logical_replication_slot(slot_name	name,	plugin	name)	
Creates	a	new	logical	(decoding)	replication	slot	named	slot_name	using	the	output	
plugin	plugin.	A	call	to	this	function	has	the	same	effect	as	the	replication	protocol	
command	CREATE_REPLICATION_SLOT ... LOGICAL.	

	 SELECT pg_create_logical_replication_slot('test_slot', 'test_decoding');	
	
Result:	
 pg_create_logical_replication_slot 	

 (test_slot,0/D000338)	
 (1 row)	

• pg_logical_slot_get_changes(slot_name	name,	upto_lsn	pg_lsn,	upto_nchanges	int,	
VARIADIC	options	text[])	
Returns	changes	in	the	slot	slot_name,	starting	from	the	point	at	which	since	changes	
have	been	consumed	last.	If	upto_lsn	and	upto_nchanges	are	NULL,	logical	decoding	

https://www.postgresql.org/docs/9.6/static/protocol-replication.html

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

will	continue	until	end	of	WAL.	If	upto_lsn	is	non-NULL,	decoding	will	include	only	
those	transactions	which	commit	prior	to	the	specified	LSN.	
If	upto_nchanges	is	non-NULL,	decoding	will	stop	when	the	number	of	rows	produced	
by	decoding	exceeds	the	specified	value.	Note,	however,	that	the	actual	number	of	
rows	returned	may	be	larger,	since	this	limit	is	only	checked	after	adding	the	rows	
produced	when	decoding	each	new	transaction	commit.	

	 SELECT pg_logical_slot_get_changes('regression_slot',null, null);	
	
Result:	
 pg_logical_slot_get_changes 	

 (0/F000190,2079,"BEGIN 2079")	
 (0/F028360,2079,"COMMIT 2079")	
 (2 row) 	

• pg_logical_slot_peek_changes(slot_name	name,	upto_lsn	pg_lsn,	upto_nchanges	int,	
VARIADIC	options	text[])	
Behaves	just	like	the	pg_logical_slot_get_changes()	function,	except	that	changes	
are	not	consumed.	

	 SELECT pg_logical_slot_peek_changes('regression_slot',null, null);	
	
Result:	
 pg_logical_slot_peek_changes

 (0/F028398,2080,"BEGIN 2080")	
 (0/F028468,2080,"table public.data: INSERT: id[integer]:1 data[text]:'3'
")	
 (0/F028568,2080,"COMMIT 2080")	
 (3 r
ow) 	

• pg_logical_slot_get_binary_changes(slot_name	name,	upto_lsn	pg_lsn,	upto_nchanges	
int,	VARIADIC	options	text[])	
Behaves	just	like	the	pg_logical_slot_get_changes()	function,	except	that	changes	
are	returned	as	bytea.	

	 SELECT pg_logical_slot_get_binary_changes('regression_slot',null, null);	
	
Result:	
 pg_logical_slot_get_binary_changes	
--	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 (0/F028398,2080,"\\x424547494e2032303830")	
 (0/F028468,2080,"\\x7461626c65207075626c69632e646174613a20494e5345	
 52543a2069645b696e74656765725d3a3120646174615b746578745d3a273327")	
 (0/F028568,2080,"\\x434f4d4d49542032303830")	
 (3 row) 	

• pg_logical_slot_peek_binary_changes(slot_name	name,	upto_lsn	pg_lsn,	upto_nchanges	
int,	VARIADIC	options	text[])	
Behaves	just	like	the	pg_logical_slot_get_changes()	function,	except	that	changes	
are	returned	as	bytea	and	that	changes	are	not	consumed.	

	 SELECT pg_logical_slot_peek_binary_changes('regression_slot',null, null);	
	
Result:	
 pg_logical_slot_peek_binary_changes	
--	
 (0/F028398,2080,"\\x424547494e2032303830")	
 (0/F028468,2080,"\\x7461626c65207075626c69632e646174613a20494e5345	
 52543a2069645b696e74656765725d3a3120646174615b746578745d3a273327")	
 (0/F028568,2080,"\\x434f4d4d49542032303830")	
 (3 row) 	

• pg_replication_origin_create(node_name	text)	
Creates	a	replication	origin	with	the	given	external	name,	and	returns	the	internal	id	
assigned	to	it.	

	 SELECT pg_replication_origin_create('test_decoding: regression_slot');	
	
Result:	
 pg_replication_origin_create 	

 1	
 (1 row) 	

• pg_replication_origin_drop(node_name	text)	
Deletes	a	previously	created	replication	origin,	including	any	associated	replay	
progress.	

	 SELECT pg_replication_origin_drop('test_decoding: temp');	
	
Result:	
 pg_replication_origin_drop 	

 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• pg_replication_origin_oid(node_name	text)	
Look	ups	a	replication	origin	by	name	and	returns	the	internal	id.	If	no	corresponding	
replication	origin	is	found	an	error	is	thrown.	

	 SELECT pg_replication_origin_oid('test_decoding: temp');	
	
Result:	
 pg_replication_origin_oid 	

 2	
 (1 row)	

• pg_replication_origin_session_setup(node_name	text)	
Marks	the	current	session	as	replaying	from	the	given	origin,	allowing	replay	progress	
to	be	tracked.			
Use	pg_replication_origin_session_reset	to	revert.	Can	only	be	used	if	no	
previous	origin	is	configured.	

	 SELECT pg_replication_origin_session_setup('test_decoding: regression_slo
t');	
	
Result:	
 pg_replication_origin_session_setup 	

 (1 row)	

• pg_replication_origin_session_reset()	
Cancels	the	configuration	of	pg_replication_origin_session_setup().	

	 SELECT pg_replication_origin_session_reset();	
	
Result:	
 pg_replication_origin_session_reset 	

 (1 row)	

• pg_replication_origin_session_is_setup()	
Returns	whether	a	replication	origin	has	been	configured	in	the	current	session.	

	 SELECT pg_replication_origin_session_is_setup();	
	
Result:	
 pg_replication_origin_session_is_setup 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

--	
 t	
 (1 row)	

• pg_replication_origin_session_progress(flush	bool)	
Returns	the	replay	location	for	the	replication	origin	configured	in	the	current	session.	
The	parameter	flush	determines	whether	the	corresponding	local	transaction	will	be	
guaranteed	to	have	been	flushed	to	disk	or	not.	

	 SELECT pg_replication_origin_session_progress(false);	
	
Result:	
 pg_replication_origin_session_progress 	
--	
 0/AABBCCDD	
 (1 row)	

• pg_replication_origin_xact_setup(origin_lsn	pg_lsn,	origin_timestamp	timestamptz)	
Current	transaction	as	replaying	a	transaction	that	has	committed	at	the	given	LSN	
and	timestamp.	Can	only	be	called	when	a	replication	origin	has	previously	been	
configured	using	pg_replication_origin_session_setup().	

	 SELECT pg_replication_origin_xact_setup('0/AABBCCDD', '2017-01-01 00:00');	
	
Result:	
 pg_replication_origin_xact_setup 	

 (1 row)	

• pg_replication_origin_xact_reset()	
Cancels	the	configuration	of	pg_replication_origin_xact_setup().	

	 SELECT pg_replication_origin_xact_reset();	
	
Result:	
 pg_replication_origin_xact_reset 	

 (1 row)	

• pg_replication_origin_advance(node_name	text,	pos	pg_lsn)	
Sets	replication	progress	for	the	given	node	to	the	given	location.	This	primarily	is	
useful	for	setting	up	the	initial	location	or	a	new	location	after	configuration	changes	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

and	similar.	Be	aware	that	careless	use	of	this	function	can	lead	to	inconsistently	
replicated	data.	

	 SELECT pg_replication_origin_advance('test_decoding: regression_slot', '0
/1');	
	
Result:	
 pg_replication_origin_advance 	

 (1 row)	

• pg_replication_origin_progress(node_name	text,	flush	bool)	
Returns	the	replay	location	for	the	given	replication	origin.	The	parameter	flush	
determines	whether	the	corresponding	local	transaction	will	be	guaranteed	to	have	
been	flushed	to	disk	or	not.	

	 SELECT pg_replication_origin_progress('test_decoding: temp', true);	
	
Result: 	
 pg_replication_origin_progress 	

 0/AABBCCDD	
 (1 row) 	

• pg_logical_emit_message(transactional	bool,	prefix	text,	content	text)	
Emits	a	text	logical	decoding	message.	This	can	be	used	to	pass	generic	messages	to	
logical	decoding	plugins	through	WAL.	The	parameter	transactional	specifies	if	the	
message	should	be	part	of	current	transaction	or	if	it	should	be	written	immediately	
and	decoded	as	soon	as	the	logical	decoding	reads	the	record.	The	prefix	is	textual	
prefix	used	by	the	logical	decoding	plugins	to	easily	recognize	interesting	messages	
for	them.	The	content	is	the	text	of	the	message.	

	 SELECT pg_logical_emit_message(false, 'test', 'this message will not be d
ecoded');	
	
Result: 	
 pg_logical_emit_message 	

 0/F05E1D0	
 (1 row) 	

• pg_logical_emit_message(transactional	bool,	prefix	text,	content	bytea)	
Emits	binary	logical	decoding	message.	This	can	be	used	to	pass	generic	messages	to	
logical	decoding	plugins	through	WAL.	The	parameter	transactional	specifies	if	the	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

message	should	be	part	of	current	transaction	or	if	it	should	be	written	immediately	
and	decoded	as	soon	as	the	logical	decoding	reads	the	record.	The	prefix	is	textual	
prefix	used	by	the	logical	decoding	plugins	to	easily	recognize	interesting	messages	
for	them.	The	content	is	the	binary	content	of	the	message.	

	 SELECT pg_logical_emit_message(false, 'test', '0/F05E1D0');	
	
Result: 	
 pg_logical_emit_message 	

 0/F05E2C8	
 (1 row) 	

• pg_column_size(any)	
Returns	the	number	of	bytes	used	to	store	a	particular	value.	

	 SELECT pg_column_size('SELECT fooid FROM foo');	
	
Result:	
 pg_column_size 	

 22	
 (1 row)	

• pg_database_size(oid)	
Returns	disk	space	used	by	the	database	with	the	specified	OID.	

	 SELECT pg_database_size(16482);	
	
Result:	
 pg_database_size 	

 9721508	
 (1 row)	

• pg_database_size(name)	
Returns	disk	space	used	by	the	database	with	the	specified	name.	

	 SELECT pg_database_size('test');	
	
Result:	
 pg_database_size 	

 9721508	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• pg_indexes_size(regclass)	
Returns	total	disk	space	used	by	indexes	attached	to	the	specified	table.	

	 SELECT pg_indexes_size(2830);	
	
Result:	
 pg_indexes_size 	

 8192	
 (1 row)	

• pg_relation_size(relation	regclass,	fork	text)	
Returns	disk	space	used	by	the	specified	fork	('main',	'fsm',	'vm',	or	'init')	of	the	
specified	table	or	index.	

	 SELECT pg_relation_size(16881, 'main');	
	
Result:	
 pg_relation_size 	

 0	
 (1 row)	

• pg_relation_size(relation	regclass)	
Shorthand	for	pg_relation_size(..., 'main').	

	 SELECT pg_relation_size(16881);	
	
Result:	
 pg_relation_size 	

 0	
 (1 row)	

• pg_size_bytes(text)	
Converts	a	size	in	human-readable	format	with	size	units	into	bytes.	

	 SELECT pg_size_bytes('100');	
	
Result:	
 pg_size_bytes 	

 100	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• pg_size_pretty(bigint)	
Converts	a	size	in	bytes	expressed	as	a	64-bit	integer	into	a	human-readable	format	
with	size	units.	

	 SELECT pg_size_pretty(10::bigint);	
	
Result:	
 pg_size_pretty 	

 10 bytes	
 (1 row)	

• pg_size_pretty(numeric)	
Converts	a	size	in	bytes	expressed	as	a	numeric	value	into	a	human-readable	format	
with	size	units.	

	 SELECT pg_size_pretty(10::numeric);	
	
Result:	
 pg_size_pretty 	

 10 bytes	
 (1 row)	

• pg_table_size(regclass)	
Returns	disk	space	used	by	the	specified	table,	excluding	indexes	(but	including	
TOAST,	free	space	map,	and	visibility	map).	

	 SELECT pg_table_size('myschema.mytable');	
	
Result:	
 pg_table_size 	

 8192	
 (1 row)	

• pg_tablespace_size(oid)	
Returns	disk	space	used	by	the	tablespace	with	the	specified	OID.	

	 SELECT pg_tablespace_size(1663);	
	
Result:	
 pg_tablespace_size 	

 40859636	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• pg_tablespace_size(name)	
Returns	disk	space	used	by	the	tablespace	with	the	specified	name.	

	 SELECT pg_tablespace_size('pg_default');	
	
Result:	
 pg_tablespace_size 	

 40859636	
 (1 row)	

• pg_total_relation_size(regclass)	
Returns	total	disk	space	used	by	the	specified	table,	including	all	indexes	and	TOAST	
data.	

	 SELECT pg_total_relation_size(16881);	
	
Result: 	
 pg_total_relation_size 	

 8192	
 (1 row)	

• pg_relation_filenode(relation	regclass)	
Returns	the	filenode	number	of	the	specified	relation.	

	 SELECT pg_relation_filenode('pg_database');	
	
Result:	
 pg_relation_filenode 	

 1262	
 (1 row)	

• pg_relation_filepath(relation	regclass)	
Returns	file	path	name	of	the	specified	relation.	

	 SELECT pg_relation_filepath('pg_database');	
	
Result:	
 pg_relation_filepath 	

 global/1262	
 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• pg_filenode_relation(tablespace	oid,	filenode	oid)	
Finds	the	relation	associated	with	a	given	tablespace	and	filenode.	

	 SELECT pg_filenode_relation(1663, 16485);	
	
Result:	
 pg_filenode_relation 	

 test.ag_label_seq	
 (1 row)	

• brin_summarize_new_values(index	regclass)	
Summarizes	page	ranges	not	already	summarized.	

	 SELECT brin_summarize_new_values('brinidx');	
	
Result:	
 brin_summarize_new_values 	

 0	
 (1 row)	

• gin_clean_pending_list(index	regclass)	
Moves	GIN	pending	list	entries	into	main	index	structure.	

	 SELECT gin_clean_pending_list('gin_test_idx'); 	
	
Result:	
 gin_clean_pending_list 	

 0	
 (1 row)	

• pg_ls_dir(dirname	text	[,	missing_ok	boolean,	include_dot_dirs	boolean])	
Lists	the	content	of	a	directory.	

	 SELECT pg_ls_dir('.');	
	
Result:	
 pg_ls_dir 	

 pg_xlog	
 global	
 ...	
 (28 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• pg_read_file(filename	text	[,	offset	bigint,	length	bigint	[,	missing_ok	boolean]])	
Returns	the	content	of	a	text	file.	

	 SELECT pg_read_file('test.sql');	
	
Result:	
 pg_read_file 	

 test +	
 (1 row)	

• pg_read_binary_file(filename	text	[,	offset	bigint,	length	bigint	[,	missing_ok	boolean]])	
Returns	the	content	of	a	file.	

	 SELECT pg_read_binary_file('test');	
	
Result:	
 pg_read_binary_file 	

 x6161610a 	
 (1 row)	

• pg_stat_file(filename	text[,	missing_ok	boolean])	
Returns	information	about	a	file.	

	 SELECT pg_stat_file('test');	
	
Result:	
 pg_stat_file

 (4,"2017-10-18 11:05:09+09","2017-10-18 11:04:55+09","2017-10-18 11:04:5
5+09",,f)	

 (1 row)	

• pg_advisory_lock(key	bigint)	
Obtains	exclusive	session	level	advisory	lock.	

	 SELECT pg_advisory_lock(1);	
SELECT locktype, classid, objid, mode FROM pg_locks where objid=1;	
	
Result:	
 locktype | classid | objid | mode 	
----------+---------+-------+---------------	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 advisory | 0 | 1 | ExclusiveLock	
 (1 row)	

• pg_advisory_lock(key1	int,	key2	int)	
Obtains	exclusive	session	level	advisory	lock.	

	 SELECT pg_advisory_lock(1,2);	
SELECT locktype, classid, objid, mode FROM pg_locks where objid=2;	
	
Result:	
 locktype | classid | objid | mode 	
----------+---------+-------+---------------	
 advisory | 1 | 2 | ExclusiveLock	
 (1 row)	

• pg_advisory_lock_shared(key	bigint)	
Obtains	shared	session	level	advisory	lock.	

	 SELECT pg_advisory_lock_shared(10);	
SELECT locktype, classid, objid, mode FROM pg_locks where objid=10;	
	
Result:	
 locktype | classid | objid | mode 	
----------+---------+-------+-----------	
 advisory | 0 | 10 | ShareLock	
 (1 row)	

• pg_advisory_lock_shared(key1	int,	key2	int)	
Obtains	shared	session	level	advisory	lock.	

	 SELECT pg_advisory_lock_shared(10,20);	
SELECT locktype, classid, objid, mode FROM pg_locks where objid=20;	
	
Result:	
 locktype | classid | objid | mode 	
----------+---------+-------+-----------	
 advisory | 10 | 20 | ShareLock	
 (1 row)	

• pg_advisory_unlock(key	bigint)	
Releases	an	exclusive	session	level	advisory	lock.	

	 SELECT pg_advisory_unlock(1);	
	
Result:	
 pg_advisory_unlock 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

 t	
 (1 row)	

• pg_advisory_unlock(key1	int,	key2	int)	
Releases	an	exclusive	session	level	advisory	lock.	

	 SELECT pg_advisory_unlock(1,2);	
	
Result:	
 pg_advisory_unlock 	

 t	
 (1 row)	

• pg_advisory_unlock_all()	
Releases	all	session	level	advisory	locks	held	by	the	current	session.	

	 SELECT pg_advisory_unlock_all();	
	
Result:	
 pg_advisory_unlock_all 	

 (1 row)	

• pg_advisory_unlock_shared(key	bigint)	
Releases	a	shared	session	level	advisory	lock.	

	 SELECT pg_advisory_unlock_shared(10);	
	
Result:	
 pg_advisory_unlock_shared 	

 t	
 (1 row)	

• pg_advisory_unlock_shared(key1	int,	key2	int)	
Releases	a	shared	session	level	advisory	lock.	

	 SELECT pg_advisory_unlock_shared(10,20);	
	
Result:	
 pg_advisory_unlock_shared 	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 t	
 (1 row)	

• pg_advisory_xact_lock(key	bigint)	
Obtains	exclusive	transaction	level	advisory	lock.	

	 SELECT pg_advisory_xact_lock(1);	
	
Result:	
 pg_advisory_xact_lock 	

 (1 row)	

• pg_advisory_xact_lock(key1	int,	key2	int)	
Obtains	exclusive	transaction	level	advisory	lock.	

	 SELECT pg_advisory_xact_lock(1,2);	
	
Result:	
 pg_advisory_xact_lock 	

 (1 row)	

• pg_advisory_xact_lock_shared(key	bigint)	
Obtains	shared	transaction	level	advisory	lock.	

	 SELECT pg_advisory_xact_lock_shared(10);	
	
Result:	
 pg_advisory_xact_lock_shared 	

 (1 row)	

• pg_advisory_xact_lock_shared(key1	int,	key2	int)	
Obtains	shared	transaction	level	advisory	lock.	

	 SELECT pg_advisory_xact_lock_shared(10,20);	
	
Result:	
 pg_advisory_xact_lock_shared 	

 (1 row)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• pg_try_advisory_lock(key	bigint)	
Obtains	exclusive	session	level	advisory	lock	if	available.	

	 SELECT pg_try_advisory_lock(100);	
	
Result:	
 pg_try_advisory_lock 	

 t	
 (1 row)	

• pg_try_advisory_lock(key1	int,	key2	int)	
Obtains	exclusive	session	level	advisory	lock	if	available.	

	 SELECT pg_try_advisory_lock(100,200);	
	
Result:	
 pg_try_advisory_lock 	

 t	
 (1 row)	

• pg_try_advisory_lock_shared(key	bigint)	
Obtains	shared	session	level	advisory	lock	if	available.	

	 SELECT pg_try_advisory_lock_shared(1000);	
	
Result:	
 pg_try_advisory_lock_shared 	

 t	
 (1 row)	

• pg_try_advisory_lock_shared(key1	int,	key2	int)	
Obtains	shared	session	level	advisory	lock	if	available.	

	 SELECT pg_try_advisory_lock_shared(1000,2000);	
	
Result:	
 pg_try_advisory_lock_shared 	

 t	
 (1 row)	

• pg_try_advisory_xact_lock(key	bigint)	
Obtains	exclusive	transaction	level	advisory	lock	if	available.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 SELECT pg_try_advisory_xact_lock(1000);	
	
Result:	
 pg_try_advisory_xact_lock 	

 t	
 (1 row)	

• pg_try_advisory_xact_lock(key1	int,	key2	int)	
Obtains	exclusive	transaction	level	advisory	lock	if	available.	

	 SELECT pg_try_advisory_xact_lock(1000,2000);	
	
Result:	
 pg_try_advisory_xact_lock 	

 t	
 (1 row)	

• pg_try_advisory_xact_lock_shared(key	bigint)	
Obtains	shared	transaction	level	advisory	lock	if	available.	

	 SELECT pg_try_advisory_xact_lock_shared(10000);	
	
Result:	
 pg_try_advisory_xact_lock_shared 	

 t	
 (1 row)	

• pg_try_advisory_xact_lock_shared(key1	int,	key2	int)	
Obtains	shared	transaction	level	advisory	lock	if	available.	

	 SELECT pg_try_advisory_xact_lock_shared(10000,20000);	
	
Result:	
 pg_try_advisory_xact_lock_shared 	

 t	
 (1 row)	

User-defined function

AgensGraph	enables	you	to	create	and	use	functions	you	need.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

As	AgensGraph	can	use	SQL	and	Cypher	query	statements	at	the	same	time,	it	is	easy	to	
create	functions	using	them,	and	the	created	functions	can	be	confirmed	with	\df	
command.	The	generated	functions	can	also	be	called	using	SELECT	or	RETURN	syntax.	

You	may	refer	to	PostgreSQL	documentation	for	more	information	on	creation	and	
grammars	of	user-defined	functions.	

• User-defined	function	

	 CREATE FUNCTION func_name (integer, integer) RETURNS integer	
 AS 'SELECT $1 + $2;'	
 LANGUAGE SQL	
 IMMUTABLE	
 RETURNS NULL ON NULL INPUT;	
	
SELECT func_name (1, 1);	
	
Result:	
 add 	

 2	
(1 row) 	
	
RETURN func_name (1, 1);	
	
Result:	
 add 	

 2	
(1 row) 	
	
DROP FUNCTION func_name (integer, integer);	

	

Hybrid Query Language

Introduction
This	section	explains	how	to	use	a	SQL	query	and	a	Cypher	query	statement	together	as	
shown	in	the	example	below.	

https://www.postgresql.org/docs/9.6/static/sql-createfunction.html

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Through	the	SQL	statement	used	in	the	RDB,	table	and	column	aggregation,	statistical	
processing,	and	GDB's	Cypher	syntax	replace	the	RDB's	join	operation	to	support	better	
data	queries.	

CREATE GRAPH SKAI worldwide;	
CREATE VLABEL dev;	
CREATE (:dev {name: 'someone', year: 2015});	
CREATE (:dev {name: 'somebody', year: 2016});	
	
CREATE TABLE history (year, event)	
AS VALUES (1996, 'PostgreSQL'), (2016, 'AgensGraph');	

Syntax

Cypher in SQL

It	is	possible	to	use	a	Cypher	syntax	inside	the	FROM	clause	to	utilize	the	dataset	of	the	
vertices	or	edges	stored	in	the	graph	DB	as	a	data	set	in	the	SQL	statement.	

Syntex	:	

SELECT [column_name]	
FROM ({table_name|SQLquery|CYPHERquery})	
WHERE [column_name operator value];	

It	can	be	used	as	the	following	example:	

SELECT n.name 	
FROM history, (MATCH (n:dev) RETURN n) AS dev	
WHERE history.year > n.year::int;	
 name	

 someone	
(1 row)	

SQL in Cypher

When	querying	the	content	of	graph	DB	through	Cypher	syntax,	it	is	possible	to	use	Match	
and	Where	syntaxes	for	search	by	specific	data	of	RDB.	However,	the	resulting	dataset	in	
the	SQL	statement	should	be	configured	to	return	a	single	row	of	results.	

Syntex	:	

MATCH [table_name]	
WHERE (column_name operator {value|SQLquery|CYPHERquery})	
RETURN [column_name];	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

It	can	be	used	as	the	following	example:	

MATCH (n:dev)	
WHERE n.year < to_jsonb((SELECT year FROM history WHERE event = 'AgensGraph'))	
RETURN properties(n) AS n;	
	
 n	

 {"name": "someone", "year": 2015}	
(1 row)	

	

Drivers

Introduction
AgensGraph	supports	DB	connection	using	a	client	driver.	The	SKAI	worldwide's	official	
drivers	and	existing	PostgreSQL	drivers	support	various	languages.			
	AgensGraph	officially	provides	the	JDBC	and	Python	drivers.	

Usage of the Java Driver
This	section	describes	how	the	graph	data	of	AgensGraph	is	processed	and	handled	in	Java	
applications.	AgensGraph's	JDBC	driver	is	based	on	the	PostgreSQL	JDBC	driver	and	allows	
Java	applications	to	access	the	AgensGraph	database.	APIs	of	the	AgensGraph	Java	driver	
are	very	similar	with	those	of	the	Postgres	JDBC	driver.	The	only	difference	is	that	the	
AgensGraph	JDBC	driver	supports	the	Cypher	query	language	as	well	as	SQL,	utilizing	
graph	data	(vertices,	edges	and	paths)	as	data	types	(Java	classes	and	instances).	

How	to	use	the	AgensGraph	JDBC	driver	is	described	throughout	this	section	with	examples.	

Get the Driver

Download	the	driver	(jar)	from	AgensGraph	JDBC	Download	or	use	maven	as	follows:	

<dependency>	
 <groupId>net.SKAI worldwide</groupId>	
 <artifactId>agensgraph-jdbc</artifactId>	
 <version>1.4.2</version>	
</dependency>	

https://bitnine.net/drivers-for-developer/

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Connection

There	are	two	things	to	consider	when	connecting	to	AgensGraph	using	the	Java	driver:	
Class	name	and	connection	string,	which	are	to	be	loaded	into	the	Java	driver.	

• class	name	:	net.SKAI worldwide.agensgraph.Driver.	
• Connection	string	consisting	of	sub-protocol,	server,	port,	and	database.	

– sub-protocol	:	jdbc:agensgraph://.	
– connection	string(including	sub-protocol)	:	

jdbc:agensgraph://server:port/database.	

The	following	code	is	an	example	of	connection	to	AgensGraph.	Connect	to	AgensGraph	
through	the	Connection	object.	

import java.sql.DriverManager;	
import java.sql.Connection;	
	
public class AgensGraphTest {	
 public static void main(String[] args) {	
 try{	
 Class.forName("net.SKAI worldwide.agensgraph.Driver");	
 Connection conn = DriverManager.getConnection 	
 ("jdbc:agensgraph://127.0.0.1:5432/agens","agens","agens");	
 System.out.println("connection success");	
 } catch (Exception e) {	
 e.printStackTrace();	
 }	
 }	
}	

Retrieving Data

This	section	describes	how	to	query	graph	data	in	AgensGraph	using	the	MATCH	clause.	

The	result	of	the	query	is	a	vertex	of	AgensGraph.	You	may	get	the	attributes	by	importing	
the	result	as	a	vertex	object.	

import net.SKAI worldwide.agensgraph.util.*;	
import java.sql.*;	
import net.SKAI worldwide.agensgraph.graph.Vertex;	
	
public class AgensGraphSelect {	
 public static void main(String[] args) throws SQLException, ClassNotFou
ndException {	
 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 Class.forName("net.SKAI worldwide.agensgraph.Driver");	
 Connection conn = DriverManager.getConnection	
 ("jdbc:agensgraph://127.0.0.1:5432/agens","agens","agens");	
 	
 try{	
 Statement stmt = conn.createStatement();	
 ResultSet rs = stmt.executeQuery	
 ("MATCH (:person {name: 'John'})-[:knows]-(friend:person) RETURN
friend");	
 while (rs.next()) {	
 Vertex person = (Vertex) rs.getObject(1);	
 System.out.println(person.getString("name"));	
 } 	
 } catch(Exception e) {	
 e.printStackTrace();	
 }	
 }	
}	

Creating Data

This	section	describes	how	to	insert	graph	data	into	AgensGraph.	

The	following	example	creates	a	vertex	with	a	vlabel	named	Person.	We	used	JsonObject	
to	add	the	property	of	the	corresponding	vertex.	

import net.SKAI worldwide.agensgraph.util.*;	
import java.sql.*;	
	
public class AgensGraphCreate {	
 public static void main(String[] args) throws SQLException, ClassNotFou
ndException {	
 	
 Class.forName("net.SKAI worldwide.agensgraph.Driver");	
 Connection conn = DriverManager.getConnection	
 ("jdbc:agensgraph://127.0.0.1:5432/agens","agens","agens");	
 	
 try{	
 PreparedStatement pstmt = conn.prepareStatement("CREATE (:person
 ?)");	
 Jsonb j = JsonbUtil.createObjectBuilder()	
 .add("name", "John")	
 .add("from", "USA")	
 .add("age", 17)	
 .build();	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 pstmt.setObject(1, j);	
 pstmt.execute();	
 } catch(Exception e) {	
 e.printStackTrace();	
 }	
 finally{	
 conn.close();	
 }	
 }	
}	

The	final	string	created:	

CREATE (:Person {name: 'John', from: 'USA', age: 17})	

[Reference]	
In	JDBC,	the	question	mark	(?)	is	a	placeholder	for	the	positional	parameter	of	the	
PreparedStatement.	You	may	be	confused	with	this	mark	as	it	is	also	being	used	in	other	sql	
operators.	To	avoid	confusion,	there	should	be	a	space	between	the	question	mark	(?)	and	a	
character	when	used	in	the	prepared	statement.	

Graph Object Classes
Class	 Description	

GraphId	 A	Java	class	corresponding	to	AgensGraph	graphid	type.	

Vertex	 A	Java	class	corresponding	to	AgenceGraph	vertex	type.	
Supports	access	to	labels	and	properties.	

Edge	 A	Java	class	corresponding	to	AgensGraph	edge	type.	
Supports	access	to	labels	and	properties.	

Path	 A	Java	class	corresponding	to	AgensGraph	graphpath	type.	
Support	how	to	access	path	length	and	vertex/edge	in	the	path.	

Jsonb	 A	Java	class	corresponding	to	AgensGraph	jsonb	type.	
Vertex	and	edge	use	Jsonb	to	store	properties(attributes).	
Supports	access	to	JSON	scalar	type,	array	type,	and	object	types.	

JsonbUtil	 Provides	various	ways	to	create	a	jsonb	object	as	in	the	CREATE	
clause	examples	above.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	

Usage of the Python Driver
This	section	shows	how	to	use	the	AgensGraph	Python	driver	with	examples.	Python	driver	
is	a	Psycopg2	type	extension	module	for	AgensGraph,	and	supports	additional	data	types	
such	as	Vertex,	Edge	and	Path	to	express	graph	data.	

Get the Driver

You	can	download	AgensGraph	Python	driver	from	SKAI	worldwide	website’s	Download	-	
Developer	Resources	or	our	Github’s	agensgraph-python.	

git clone https://github.com/SKAI worldwide-oss/agensgraph-python.git	

Install

$ pip install -U pip	
$ pip install psycopg2	
	
$ python /path/to/agensgraph/python/setup.py install	

Connection

This	is	an	example	of	a	connection	string	for	accessing	AgensGraph	using	a	Python	driver.	

import psycopg2 	
import agensgraph 	
	
conn = psycopg2.connect("dbname=agens host=127.0.0.1 user=agens") 	
print "Opened database successfully"	

Creating Data

This	section	explains	how	to	insert	graph	data	into	AgensGraph.	The	following	code	
(example)	creates	a	vertex	with	a	vlabel	"Person".	

import psycopg2 	
import agensgraph	
	
conn = psycopg2.connect("dbname=agens host=127.0.0.1 user=agens") 	
print "Opened database successfully"	
	
cur = conn.cursor()	
	
cur.execute("DROP GRAPH IF EXISTS test CASCADE") 	

https://bitnine.net/drivers-for-developer
https://bitnine.net/drivers-for-developer

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

cur.execute("CREATE GRAPH test") 	
cur.execute("SET graph_path = test") 	
cur.execute("CREATE (:person {name: 'John', from: 'USA', age: 17})") 	
cur.execute("CREATE (:person {name: 'Daniel', from: 'Korea', age: 20})") 	
cur.execute("MATCH (p:person {name: 'John'}),(k:person{name: 'Daniel'}) CREAT
E (p)-[:knows]->(k)")	
	
conn.commit() 	
conn.close()	

Retrieving Data

This	section	explains	how	to	query	graph	data	in	AgensGraph	using	a	MATCH	clause.	The	
result	of	the	query	is	a	vertex	of	AgensGraph.	You	can	get	the	properties	by	importing	the	
result	as	a	vertex	object.	

import psycopg2	
import agensgraph	
	
conn = psycopg2.connect("dbname=agens host=127.0.0.1 user=agens")	
print "Opened database successfully"	
	
cur = conn.cursor()	
cur.execute("SET graph_path = test")	
cur.execute("MATCH (:person {name: 'John'})-[:knows]-(friend:person) RETURN f
riend")	
	
friend = cur.fetchone()	
print str(friend[0])	
	
conn.commit()	
conn.close()	

	

Procedural language

Procedural language
AgensGraph	can	also	write	user-defined	functions	in	languages	other	than	SQL	and	C.	These	
other	languages	are	generally	referred	to	as	procedural	languages	(PLs).	In	the	case	of	
functions	written	in	procedural	languages,	the	database	server	cannot	interpret	the	
function's	source	text.	Thus,	the	task	is	passed	to	a	special	handler	that	knows	the	details	of	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

the	language.	The	handler	performs	all	the	tasks,	including	parsing,	syntax	analysis,	and	
execution.	The	handler	itself	is	a	C	language	function	that,	like	any	C	other	functions,	is	
compiled	into	a	shared	object	and	loaded	on	demand.	Current	AgensGraph	has	four	
procedural	languages:	PL/pgSQL,	PL/Tcl,	PL/Perl,	and	PL/Python.	

Installing Procedural Languages

Procedural	languages	must	be	installed	in	each	database	to	be	used.	However,	the	
procedural	languages	installed	in	the	template1	database	will	be	automatically	available	in	
all	subsequent	databases	created,	as	the	entries	in	template1	are	copied	by	CREATE	
DATABASE.	The	database	administrator	can	determine	which	languages	can	be	used	in	
which	databases	and	can	make	only	certain	languages	available,	if	needed.	

In	the	case	of	languages	provided	with	the	standard	distribution,	you	only	need	to	run	
CREATE EXTENSION	language_name	to	install	them	in	the	current	database.	Alternatively,	
you	may	use	the	program	createlang	to	do	this	from	the	shell	command	line.	For	example,	
to	install	a	language	called	PL/Python	in	the	template1	database,	see	the	following	
example:	

createlang plpython template1	

The	manual	procedure	described	below	is	recommended	only	if	you	are	installing	a	
language	that	is	not	packaged	into	extension.	

Manual	Procedural	Language	Installation	
Procedural	languages	can	be	installed	in	a	database	in	five	steps	and	must	be	done	by	the	
database	superuser.	In	most	cases,	the	necessary	SQL	commands	can	be	packaged	into	an	
extension's	install	script	and	executed	using	CREATE	EXTENSION.	

1. The	shared	object	of	the	language	handler	should	be	compiled	and	installed	in	an	
appropriate	library	directory.	It	works	the	same	way	as	building	and	installing	
modules	with	regular	user-defined	C	functions.	Often	the	language	handler	relies	on	
external	libraries	that	provide	the	actual	programming	language	engine;	in	such	a	case,	
the	share	object	must	be	installed.	

2. The	handler	must	be	declared	as	a	command.	

	 CREATE FUNCTION handler_function_name()	
 RETURNS language_handler	
 AS 'path-to-shared-object'	
 LANGUAGE C;	

	 The	special	return	type	of	language_handler	tells	the	database	system	that	this	
function	does	not	return	one	of	the	defined	SQL	data	types	and	cannot	be	used	directly	
in	the	SQL	statement.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

3. Optionally,	the	language	handler	can	provide	an	"inline"	handler	function	that	
executes	anonymous	code	blocks	(DO	commands)	written	in	this	language.	If	an	inline	
handler	function	is	provided	by	the	language,	it	must	be	declared	with	the	following	
command:	

	 CREATE FUNCTION inline_function_name(internal)	
 RETURNS void	
 AS 'path-to-shared-object'	
 LANGUAGE C;	

4. Optionally,	the	language	handler	can	provide	a	"validator"	function	that	checks	
accuracy	of	the	function	definition	without	actually	executing	it.	The	validator	function	
is	called	by	CREATE	FUNCTION.	If	the	validator	function	is	provided	by	the	language,	
you	must	declare	it	with	the	following	command:	

	 CREATE FUNCTION validator_function_name(oid)	
 RETURNS void	
 AS 'path-to-shared-object'	
 LANGUAGE C STRICT;	

5. Finally,	PL	must	be	declared	with	the	following	command:	

	 CREATE [TRUSTED] [PROCEDURAL] LANGUAGE language-name	
 HANDLER handler_function_name	
 [INLINE inline_function_name]	
 [VALIDATOR validator_function_name] ;	

	 The	optional	keyword	TRUSTED	specifies	that	the	language	does	not	grant	access	rights	
to	data	that	will	not	be	used	by	the	user.	Trusted	languages	are	designed	for	general	
database	users	(i.e.	users	without	superuser	privileges)	and	can	safely	create	functions	
and	trigger	procedures.	As	the	PL	function	is	executed	within	the	database	server,	the	
TRUSTED	flag	should	only	be	provided	for	languages	that	do	not	allow	access	to	the	
database	server	or	file	system.	PL/pgSQL,	PL/Tcl,	and	PL/Perl	languages	are	
considered	to	be	trusted.	Languages	PL/TclU,	PL/PerlU,	and	PL/PythonU	are	designed	
to	provide	unlimited	functionality	and	should	not	be	marked	as	trusted.	

	 In	the	default	AgensGraph	installation,	a	handler	for	the	PL/pgSQL	language	is	built	
and	installed	in	the	"library"	directory.	The	PL/pgSQL	language	itself	is	installed	in	
every	database.	Although	Tcl	support	is	configured	and	handlers	for	PL/Tcl	and	
PL/TclU	are	built	and	installed	in	the	library	directory,	the	languages	themselves	are	
not	installed	by	default	in	the	database.	Likewise,	even	if	Perl	support	is	configured,	
PL/Perl	and	PL/PerlU	handlers	are	built	and	installed,	Python	support	is	configured,	
and	a	PL/PythonU	handler	is	installed,	these	languages	are	not	installed	by	default.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

PL/pgSQL

Introduction

PL/pgSQL	is	a	loadable	procedural	language	in	AgensGraph.	The	design	objective	of	
PL/pgSQL	is	to	be	a	loadable	procedural	language	with	the	following	features:	

• Can	be	used	to	create	functions	and	trigger	procedures;	
	

• Adds	control	structures	to	the	SQL	language;	
	

• Can	perform	complex	computations;	
	

• Inherits	all	user	defined	types,	functions	and	operators;	
	

• Can	be	defined	to	be	trusted	by	the	server;	
	

• Is	easy	to	use.	

Functions	created	in	PL/pgSQL	can	be	used	wherever	built-in	functions	can	be	used.	For	
example,	you	can	create	a	function	that	processes	complex	conditions,	and	later	define	the	
function	as	an	operator	or	use	it	in	index	expression.	

In	AgensGraph,	PL/pgSQL	is	installed	by	default.	However,	as	it	is	still	a	loadable	module,	
administrators	who	are	strictly	security-conscious	can	remove	PL/pgSQL.	

Advantages	of	PL/pgSQL	
SQL	is	a	query	language	used	in	databases.	Although	SQL	is	easy	to	learn,	all	SQL	
statements	must	be	executed	separately	per	statement	in	the	database	server.	
In	other	words,	a	client	application	sends	a	query	to	the	database	server	individually,	waits	
until	each	query	is	processed,	takes	the	result,	computes	it,	and	then	sends	the	next	query	
to	the	server.	These	processes	generate	internal	processing	and	cause	network	load	if	the	
database	and	client	are	on	different	machines.	
As	PL/pgSQL	is	easy	to	use	in	procedural	languages	and	SQL	is	easy	to	use,	you	can	group	
queries	and	operations	within	a	database	server	and	save	on	client/server	communications	
loads.	

• Eliminate	unnecessary	communications	between	client	and	server.	
	

• Clients	do	not	have	to	hold	unnecessary	intermediate	results	or	to	transfer	them	
between	client	and	server.	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• You	do	not	need	to	do	repeated	query	parsing.	

Because	of	these	factors,	you	can	expect	a	noticeable	performance	improvement	over	
applications	that	do	not	use	stored	functions.	
In	addition,	PL/pgSQL	may	use	all	data	types,	operations,	and	functions	of	SQL.	

Supported	argument	and	result	data	types	
Functions	written	in	PL/pgSQL	can	accept	scalar	or	array	data	types	supported	by	the	
server	as	arguments	and	can	return	results.	You	can	also	use	or	return	a	specified	complex	
type	(row	type).	PL/pgSQL	functions	can	also	return	records.	

PL/pgSQL	functions	can	be	declared	using	the	VARIADIC	marker	to	allow	arguments	of	
varying	numbers.	This	works	in	exactly	the	same	way	as	SQL	functions.	

PL/pgSQL	functions	can	be	declared	to	accept	and	return	various	types,	such	as	
anyelement,	anyarray,	anynonarray,	anyenum,	and	anyrange.	The	actual	data	types	handled	
by	the	polymorphic	function	may	vary	from	call	to	call.	

Structure of PL/pgSQL

Functions	written	in	PL/pgSQL	are	defined	in	the	server	by	executing	CREATE	FUNCTION	
(command)	as	follows:	

CREATE FUNCTION somefunc(integer, text) RETURNS integer	
AS 'function body text'	
LANGUAGE plpgsql;	

The	function	body	is	simply	a	literal	string	associated	with	CREATE	FUNCTION.	It	is	more	
helpful	to	use	dollar	($)	quotes	to	write	function	bodies	than	to	use	a	usual	single	quotes	
syntax.	If	there	is	no	dollar	citation	mark,	you	should	escape	it	by	doubling	single	quotes	or	
backslashes	of	the	function	body.	Almost	all	examples	in	this	section	use	dollar	quote	
literals	in	function	bodies.	

PL/pgSQL	is	a	block-structured	language.	The	full	text	of	a	function	definition	should	be	a	
block.	The	block	is	defined	as	follows:	

[<<label>>]	
[DECLARE	
 declarations]	
BEGIN	
 statements	
END [label];	

Each	declaration	and	each	statement	within	a	block	ends	with	a	semicolon.	A	block	
appearing	within	other	block,	as	shown	above,	should	have	a	semicolon	after	END.	
However,	a	semicolon	is	not	required	at	the	end	of	the	function	body.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Tip : In general, they mistakenly use a semicolon immediately after BEGIN very often. This is incorrect and causes a
syntax error.

Label	is	needed	only	if	you	want	to	identify	a	block	to	use	in	an	EXIT	statement	or	to	
restrict	the	name	of	a	variable	declared	in	a	block.	If	label	is	positioned	after	END,	it	must	
match	the	label	at	the	beginning	of	the	block.	Identifiers,	like	regular	SQL	commands,	are	
converted	to	lower	case	by	default	if	they	do	not	have	double	quotes.	

Annotations	work	the	same	way	in	PL/pgSQL	code	as	in	regular	SQL.	Two	dashes	(--)	are	
recognized	as	a	comment	(from	the	beginning	to	the	end	of	the	line).	To	process	a	comment	
as	a	block,	include	the	comment	between	/*	and	*/.	

Every	statement	in	a	statement	section	of	a	block	can	be	a	sub-block.	Subblocks	may	be	
used	for	logical	grouping	or	localization	of	a	small	group	of	variables.	A	variable	declared	in	
a	subblock	masks	a	variable	of	a	similar	name	in	an	outer	block	for	the	duration	of	the	
subblock.	By	specifying	a	block	name,	you	may	access	an	external	variable.	

CREATE FUNCTION somefunc() RETURNS integer AS $$	
	
DECLARE	
 quantity integer := 30;	
BEGIN	
 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 30	
 quantity := 50;	
 --	
 -- Create a subblock	
 --	
 DECLARE	
 quantity integer := 80;	
 BEGIN	
 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 80	
 RAISE NOTICE 'Outer quantity here is %', outerblock.quantity; -- Pri
nts 50	
 END;	
	
 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 50	
	
 RETURN quantity;	
END;	
$$ LANGUAGE plpgsql;	

Note : Actually there is a hidden "outer block" surrounding the body of the PL/pgSQL function. This block provides
the function's parameter declarations (if any) and special variables such as FOUND. The outer block is labeled with
the name of the function. That is, you can limit parameters and special variables to the name of the function.

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

It	is	important	that	using	BEGIN/END	to	group	statements	in	PL/pgSQL	is	not	to	be	
confused	with	similarly-named	SQL	commands	for	transaction	control.	BEGIN/END	in	
PL/pgSQL	is	only	used	for	grouping;	it	does	not	start/end	any	transaction.	Functions	and	
trigger	procedures	are	always	executed	within	a	transaction	set	by	an	outer	query.	You	
cannot	start	or	commit	a	transaction	because	there	is	no	context	to	start	the	transaction.	
However,	you	may	construct	a	sub-transaction	that	can	be	rolled	back	without	affecting	
external	transactions	since	a	block	contains	an	EXCEPTION	clause.	

Declarations

All	variables	used	in	a	block	should	be	declared	in	the	declaration	section	of	the	block.	(The	
only	exception	is	that	a	loop	variable	in	a	FOR	loop	that	repeats	a	range	of	integers	is	
automatically	declared	as	an	integer	variable,	and	a	loop	variable	in	a	FOR	loop	that	queries	
the	result	of	cursor	is	automatically	declared	as	a	record	variable.)	PL/pgSQL	variables	can	
have	any	SQL	data	type,	such	as	integer,	varchar,	and	char.	

Below	are	some	examples	of	variable	declarations:	

user_id integer;	
quantity numeric(5);	
url varchar;	
myrow tablename%ROWTYPE;	
myfield tablename.columnname%TYPE;	
arow RECORD;	

The	following	is	a	general	syntax	of	a	variable	declaration:	

name [CONSTANT] type [COLLATE collation_name] [NOT NULL] [{ DEFAULT | :
= | = } expression];	

If	a	DEFAULT	clause	is	given,	it	specifies	the	initial	value	assigned	to	the	variable	at	block	
input.	If	a	DEFAULT	clause	is	not	provided,	the	variable	is	initialized	to	the	SQL	null	value.	
The	CONSTANT	option	prevents	variables	from	being	allocated	after	initialization	so	that	the	
value	remains	constant	for	the	duration	of	the	block.	The	COLLATE	option	specifies	collation	
to	use	for	variables.	If	NNOT NULL	is	specified,	a	runtime	error	occurs	if	a	null	value	is	
assigned	at	execution.	All	variables	declared	as	NOT NULL	should	specify	a	non-null	default	
value.	The	equal	sign	(=)	can	be	used	in	place	of	":=",	which	is	compatible	with	PL/SQL.	

The	default	value	of	a	variable	is	evaluated	and	assigned	to	a	variable	whenever	a	block	is	
entered	(not	once	per	function	call).	For	example,	if	you	assign	now()	to	a	variable	of	type	
timestamp,	the	function	will	have	the	current	function	call	time,	not	the	precompiled	time.	

quantity integer DEFAULT 32;	
url varchar := 'http://mysite.com';	
user_id CONSTANT integer := 10;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Function	parameter	declaration	
The	parameters	passed	to	the	function	are	named	identifiers	$1,	$2,	and	so	on.	Optionally,	
you	can	declare	an	alias	for	the	$n	parameter	name	to	improve	readability.	You	may	then	
use	the	alias	or	numeric	identifier	to	refer	to	the	parameter	value.	

There	are	two	ways	to	create	an	alias.	Naming	a	parameter	in	CREATE FUNCTION	command	
is	a	preferred	way.	

CREATE FUNCTION sales_tax(subtotal real) RETURNS real AS $$	
BEGIN	
 RETURN subtotal * 0.06;	
END;	
$$ LANGUAGE plpgsql;	

Another	way	is	to	explicitly	declare	the	alias	using	declaration	syntax.	

name ALIAS FOR $n;	

Below	is	an	example	of	this	style:	

CREATE FUNCTION sales_tax(real) RETURNS real AS $$	
DECLARE	
 subtotal ALIAS FOR $1;	
BEGIN	
 RETURN subtotal * 0.06;	
END;	
$$ LANGUAGE plpgsql;	

Note: These two examples are not exactly the same. In the first case, subtotal can be referenced as
sales_tax.subtotal, but in the second case it cannot be marked as subtotal. (If you attach label to an
inner block, the partial label can be confined to that label instead.

When	a	PL/pgSQL	function	is	declared	as	an	output	parameter,	the	output	parameter	has	a	
$n	name	and	an	optional	alias	in	the	same	way	as	a	normal	input	parameter.	The	output	
parameter	effectively	represents	a	variable	that	starts	with	NULL.	This	should	be	assigned	
during	execution	of	the	function.	The	final	value	of	the	parameter	is	the	value	to	be	
returned.	For	example,	the	sales-tax	example	could	be:	

CREATE FUNCTION sales_tax(subtotal real, OUT tax real) AS $$	
BEGIN	
 tax := subtotal * 0.06;	
END;	
$$ LANGUAGE plpgsql;	

Output	parameters	are	most	useful	when	returning	multiple	values.	Here	is	a	simple	
example:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

CREATE FUNCTION sum_n_product(x int, y int, OUT sum int, OUT prod int) AS $$	
BEGIN	
 sum := x + y;	
 prod := x * y;	
END;	
$$ LANGUAGE plpgsql;	

This	effectively	creates	an	anonymous	record	type	for	the	result	of	the	function.	If	a	
RETURNS	clause	is	provided,	a	RETURNS	record	must	be	specified.	

Another	way	to	declare	a	PL/pgSQL	function	is	to	use	RETURNS	TABLE.	For	example:	

CREATE FUNCTION extended_sales(p_itemno int)	
RETURNS TABLE(quantity int, total numeric) AS $$	
BEGIN	
 RETURN QUERY SELECT s.quantity, s.quantity * s.price FROM sales AS s	
 WHERE s.itemno = p_itemno;	
END;	
$$ LANGUAGE plpgsql;	

This	is	exactly	the	same	as	declaring	one	or	more	OUT	parameters	and	specifying	RETURNS
SETOF	sometype.	

Alias	
You	can	declare	alias	for	all	variables	as	well	as	function	parameters.	Alias	is	used,	in	an	
actual	case,	to	assign	a	different	name	to	a	variable	with	a	predefined	name,	such	as	NEW	or	
OLD,	in	the	trigger	procedure.	For	example:	

DECLARE	
 prior ALIAS FOR old;	
 updated ALIAS FOR new;	

Since	ALIAS	creates	two	methods	of	naming	the	same	object,	its	unrestricted	use	can	be	
confusing.	It	is	best	to	use	ALIAS	only	for	the	purpose	of	ignoring	predefined	names.	

Expressions

All	expressions	used	in	PL/pgSQL	statements	are	processed	using	the	server's	main	SQL	
launcher.	The	PL/pgSQL	statements	can	be	written	as	follows:	

IF expression THEN ...	

PL/pgSQL	evaluates	expressions	by	providing	the	same	query	as	the	main	SQL	engine.	
During	configuration	of	SELECT	command,	the	PL/pgSQL	variable	name	is	changed	to	a	
parameter.	This	allows	you	to	prepare	a	query	plan	for	SELECT	once	and	then	reuse	it	for	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

subsequent	evaluations	using	different	values	of	the	variable.	For	example,	if	you	write	two	
integer	variables	x	and	y	as	

IF x < y THEN ...	

it	is	used	as	follows:	

PREPARE statement_name(integer, integer) AS SELECT $1 < $2;	

This	prepared	statement	is	performed	with	the	value	of	the	PL/pgSQL	variable	provided	
each	time	the	IF	statement	is	executed.	In	general,	specific	information	like	this	is	not	that	
useful	for	PL/pgSQL	users.	However,	it	is	worth	knowing	in	case	of	a	problem	diagnosis.	

Basic Statements

This	section	and	the	subsequent	sections	describe	all	statement	types	that	PL/pgSQL	
explicitly	understands.	Those	that	are	not	recognized	as	part	of	these	statement	types	are	
considered	SQL	commands	and	are	sent	to	the	underlying	database	engine	for	execution.	

Assignment	
To	assign	a	value	to	a	PL/pgSQL	variable:	

variable { := | = } expression;	

As	mentioned	earlier,	the	expressions	in	these	statements	are	obtained	using	SQL	SELECT	
(command)	sent	to	the	underlying	database	engine.	An	expression	should	have	a	single	
value	(it	can	be	a	row	value	if	the	variable	is	a	row	or	record	variable).	The	target	variable	
can	be	a	simple	variable	(optionally	defined	by	a	block	name),	a	row	or	record	variable	field,	
or	an	array	element	that	is	a	simple	variable	or	field.	The	equal	sign	(=)	can	be	used	in	place	
of	":=",	which	is	compatible	with	PL/SQL.	

If	the	result	data	type	of	the	expression	does	not	match	the	data	type	of	the	variable	or	does	
not	match	a	specific	length	or	precision,	the	PL/pgSQL	interpreter	attempts	to	implicitly	
convert	the	result	value	using	the	result	type	of	the	output	function	and	the	variable	type	of	
the	input	function.	If	the	string	form	of	the	result	value	is	of	a	type	that	is	not	allowed	in	the	
input	function,	then	the	input	function	may	generate	a	run-time	error.	

For	example:	

tax := subtotal * 0.06;	
my_record.user_id := 20;	

Executing	a	command	without	a	result	
For	SQL	commands	that	do	not	return	a	row	(for	example,	an	INSERT	without	a	RETURNING	
clause),	you	can	execute	the	commands	within	a	PL/pgSQL	function	simply	by	writing	them.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

The	PL/pgSQL	variable	names	that	appear	in	the	command	text	are	treated	as	parameters,	
and	the	current	values	of	the	variables	are	provided	as	the	parameter	values	at	runtime.	
This	is	exactly	the	same	as	the	process	described	hereinabove	for	expressions.	

When	you	execute	an	SQL	command	in	this	way,	PL/pgSQL	can	cache	and	reuse	the	
command	execution	plan.	

Calling	a	function	without	a	useful	result	value	can	be	sometimes	useful	for	evaluating	
expressions	or	SELECT	queries,	and	the	results	can	be	ignored.	To	do	this	in	PL/pgSQL,	we	
recommend	you	to	use	the	PERFORM	statement.	

PERFORM query;	

The	query	is	then	executed	and	the	results	are	discarded.	You	should	write	your	query	the	
same	way	you	would	write	an	SQL	SELECT	command,	and	replace	the	initial	keyword	
SELECT	with	PERFORM.	For	WITH	queries,	use	PERFORM	and	put	the	query	into	parentheses	(in	
this	case,	the	query	can	only	return	one	row).	As	with	commands	that	do	not	return	results,	
the	PL/pgSQL	variable	is	replaced	by	the	query,	and	the	plan	is	cached	in	the	same	manner.	
The	special	variable	FOUND	is	set	to	true	if	the	query	generated	at	least	one	row,	and	set	to	
false	if	no	rows	were	generated.	

Note: You may expect to get this result by writing your own SELECT, but for now, PERFORM is the only way to do
it. An SQL command that can return a row such as SELECT is treated as an error and rejected if it is without an
INTO clause described in the next section.

For	example:	

PERFORM create_mv('cs_session_page_requests_mv', my_query);	

Run	a	query	as	a	single	row	result	
A	single	row	(possibly	multiple	columns)	resulting	from	an	SQL	command	can	be	assigned	
to	a	record	variable,	row-type	variable,	or	scalar	variable	list	that	you	create.	This	is	done	
by	writing	a	basic	SQL	command	and	adding	an	INTO	clause.	For	example,	target	can	be	a	
record	variable,	a	row	variable,	or	a	comma-delimited	simple	variable,	and	a	list	of	
record/row	fields.	

SELECT select_expressions INTO [STRICT] target FROM ...;	
INSERT ... RETURNING expressions INTO [STRICT] target;	
UPDATE ... RETURNING expressions INTO [STRICT] target;	
DELETE ... RETURNING expressions INTO [STRICT] target;	

For	commands	that	do	not	return	rows,	the	PL/pgSQL	variable	is	replaced	with	the	rest	of	
the	query,	as	described	above,	and	the	plan	is	cached.	It	works	in	SELECT	
(INSERT/UPDATE/DELETE	that	uses	RETURNING)	and	works	according	to	utility	commands	
that	return	row	set	results	(e.g.	EXPLAIN).	Except	for	the	INTO	clause,	SQL	commands	are	
the	same	as	those	written	outside	of	PL/pgSQL.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Tip: To create a table as a result of SELECT within a PL/pgSQL function, you should use the CREATE TABLE ...
AS SELECT statement.

When	using	a	row	or	variable	list	as	a	target,	the	result	column	of	a	query	should	exactly	
match	the	target	structure	for	the	numbers	and	data	types.	Otherwise,	a	runtime	error	will	
occur.	When	a	record	variable	is	a	target,	it	automatically	configures	row	types	of	the	query	
result	columns.	

The	INTO	clause	may	appear	at	almost	any	position	in	an	SQL	command.	It	is	usually	
written	immediately	before	or	after	the	select_expressions	list	in	SELECT	command,	or	at	
the	end	of	commands	for	other	command	types.	

If	STRICT	is	not	specified	in	an	INTO	clause,	the	target	is	set	to	the	first	row	returned	by	the	
query,	or	set	to	null	if	the	query	did	not	return	a	row.	(The	"first	row"	is	not	well	defined	
unless	you	use	ORDER BY.)	The	result	row	after	the	first	row	is	discarded.	You	can	check	the	
special	FOUND	variable	to	see	if	the	row	has	been	returned.	

SELECT * INTO myrec FROM emp WHERE empname = myname;	
IF NOT FOUND THEN	
 RAISE EXCEPTION 'employee % not found', myname;	
END IF;	

In	the	case	where	a	STRICT	option	is	specified,	the	query	should	return	exactly	a	single	row.	
Otherwise,	either	NO_DATA_FOUND	(no	rows)	or	TOO_MANY_ROWS	(two	or	more	rows)	is	
reported	as	a	run-time	error.	If	you	want	to	find	certain	errors	as	follows,	you	may	use	an	
exception	block.	

BEGIN	
 SELECT * INTO STRICT myrec FROM emp WHERE empname = myname;	
 EXCEPTION	
 WHEN NO_DATA_FOUND THEN	
 RAISE EXCEPTION 'employee % not found', myname;	
 WHEN TOO_MANY_ROWS THEN	
 RAISE EXCEPTION 'employee % not unique', myname;	
END;	

Successful	execution	of	STRICT	always	sets	FOUND	to	true.	

In	the	case	of	INSERT/UPDATE/DELETE	with	RETURNING,	PL/pgSQL	will	report	an	error	for	
more	than	one	returned	row,	even	if	STRICT	is	not	specified.	This	is	because	there	is	no	
such	option	as	ORDER BY	to	determine	if	an	affected	row	should	be	returned.	

In	the	case	where	print_strict_params	is	enabled	for	a	function	and	an	error	occurs	due	
to	unmet	requirements	of	STRICT,	DETAIL	of	the	error	message	contains	information	about	
the	parameters	passed	to	the	query.	You	can	change	the	print_strict_params	setting	for	
all	functions	by	setting	plpgsql.print_strict_params;	it	is,	however,	affected	only	by	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

editing	of	the	subsequence	function.	It	is	also	possible	to	enable	it	on	a	function-by-function	
basis	using	compiler	options.	For	example:	

CREATE FUNCTION get_userid(username text) RETURNS int	
AS $$	
#print_strict_params on	
DECLARE	
userid int;	
BEGIN	
 SELECT users.userid INTO STRICT userid	
 FROM users WHERE users.username = get_userid.username;	
 RETURN userid;	
END	
$$ LANGUAGE plpgsql;	

If	unsuccessful,	this	function	may	generate	an	error	message	as	follows:	

ERROR: query returned no rows	
DETAIL: parameters: $1 = 'nosuchuser'	
CONTEXT: PL/pgSQL function get_userid(text) line 6 at SQL statement	

Note: The STRICT option matches behavior of SELECT INTO and related statements in Oracle PL/SQL.

Executing	dynamic	commands	
You	will	often	need	to	create	a	dynamic	command	(i.e.	a	command	containing	different	
tables	or	different	data	types	each	time	it	is	executed)	within	a	PL/pgSQL	function.	The	
general	attempt	by	PL/pgSQL	to	cache	plans	for	commands	does	not	work	in	this	scenario.	
An	EXECUTE	statement	is	provided	to	handle	this	kind	of	problem.	

EXECUTE command-string [INTO [STRICT] target] [USING expression [, ...]];	

Here,	command-string	is	an	expression	that	creates	a	string	(type	text)	containing	a	
command	to	execute.	An	optional	target	is	a	record	variable,	a	row	variable,	or	a	comma-
delimited	simple	variable,	and	a	record/line	field	list	where	the	result	of	the	command	will	
be	stored.	The	optional	USING	expression	provides	a	value	to	be	inserted	into	the	command.	

In	a	calculated	command	string,	PL/pgSQL	variables	cannot	be	replaced.	All	necessary	
variable	values	should	be	inserted	into	the	command	string	as	configured.	Alternatively,	
you	can	use	parameters	as	described	below.	

There	is	also	no	caching	plan	for	commands	executed	via	EXECUTE.	Instead,	commands	are	
always	scheduled	each	time	the	statement	is	executed.	Therefore,	the	command	strings	can	
be	generated	dynamically	within	a	function	to	perform	actions	in	other	tables	and	columns.	

The	INTO	clause	specifies	the	result	of	an	SQL	command	that	assigns	the	results	of	returned	
rows.	When	a	row	or	variable	list	is	provided,	it	should	exactly	match	the	structure	of	the	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

query	result	(if	a	record	variable	is	used,	it	is	automatically	configured	to	match	the	result	
structure).	If	multiple	rows	are	returned,	only	the	first	row	is	assigned	to	the	INTO	variable;	
NULL	is	assigned	to	the	INTO	variable,	if	no	rows	are	returned.	If	the	INTO	clause	is	not	
specified,	the	query	result	is	discarded.	

Given	a	STRICT	option,	an	error	is	reported	if	the	query	does	not	generate	exactly	a	single	
row.	

Command	strings	may	use	parameter	values	referenced	in	commands	as	$1,	$2,	and	so	on.	
These	symbols	refer	to	values	provided	in	the	USING	clause.	This	method	is	often	preferred	
over	inserting	data	values	into	a	command	string	as	text.	That	is,	the	runtime	overhead	of	
converting	values	into	text	and	back	can	be	avoided,	and	SQL-injection	attacks	occur	less	
often	as	it	does	not	require	quotes	or	escapes.	For	example:	

EXECUTE 'SELECT count(*) FROM mytable WHERE inserted_by = $1 AND inserted <=
$2'	
 INTO c	
 USING checked_user, checked_date;	

Parameter	symbols	can	only	be	used	for	data	values.	To	use	dynamically-determined	table	
or	column	names,	you	must	insert	the	corresponding	characters	into	the	command	string.	
For	example,	if	you	need	to	perform	the	preceding	query	on	a	dynamically	selected	table,	
you	can	do	the	following:	

EXECUTE 'SELECT count(*) FROM '	
 || quote_ident(tabname)	
 || ' WHERE inserted_by = $1 AND inserted <= $2'	
 INTO c	
 USING checked_user, checked_date;	

A	simpler	approach	will	be	to	use	%I	of	format()	for	the	table	or	column	name	(newline-
delimited,	concatenated	strings).	

EXECUTE format('SELECT count(*) FROM %I '	
 'WHERE inserted_by = $1 AND inserted <= $2', tabname)	
 INTO c	
 USING checked_user, checked_date;	

Another	limitation	on	parameter	symbols	is	that	they	only	work	with	SELECT,	INSERT,	
UPDATE	and	DELETE	commands.	In	other	syntax	types	(commonly	referred	to	as	utility	
syntax),	you	should	insert	values	in	text,	even	if	they	are	data	values.	

As	in	the	first	example	above,	EXECUTE	with	a	simple	constant	command	string	and	USING	
parameters	is	functionally	equivalent	to	writing	commands	directly	in	PL/pgSQL	and	
allowing	PL/pgSQL	variables	to	be	automatically	replaced.	The	important	difference	is	that	
EXECUTE	re-plans	the	commands	at	each	run	to	generate	a	plan	associated	with	the	current	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

parameter	values.	On	the	other	hand,	PL/pgSQL	may	create	a	general	plan	and	cache	it	for	
reuse.	In	situations	where	the	best	planning	depends	heavily	on	parameter	values,	it	is	a	
good	idea	to	use	EXECUTE	to	make	sure	that	the	general	plan	is	not	selected.	

SELECT INTO	is	not	currently	supported	within	EXECUTE.	Instead,	you	should	issue	a	generic	
SELECT	command	and	specify	INTO	as	part	of	EXECUTE.	

Control Structures

The	control	structure	is	probably	the	most	useful	and	important	part	of	PL/pgSQL.	The	
PL/pgSQL	control	structure	allows	you	to	manipulate	AgensGraph	data	in	a	very	flexible	
and	powerful	way.	

Return	from	a	function	
There	are	two	commands	that	can	return	data	from	functions:	RETURN	and	RETURN	NEXT.	

1. RETURN	

RETURN expression;	

RETURN	with	an	expression	terminates	the	function	and	returns	the	value	of	the	expression	
to	the	caller.	This	format	is	used	for	PL/pgSQL	functions	that	do	not	return	sets.	
In	a	function	that	returns	a	scalar	type,	the	result	of	the	expression	is	automatically	
converted	to	the	return	type	of	the	function	as	described	for	the	assignment.	However,	to	
return	a	composite	(row)	value,	you	should	write	an	expression	that	correctly	conveys	the	
set	of	columns	requested.	This	may	require	explicit	type	conversion.	
If	you	declare	a	function	using	an	output	parameter,	you	need	to	write	only	RETURN	without	
an	expression.	The	current	value	of	the	output	parameter	variable	is	returned.	
If	you	declare	a	function	that	returns	void,	you	can	use	the	RETURN	statement	to	terminate	
the	function	early.	Do	not	write	expressions	after	RETURN.	
The	return	value	of	a	function	cannot	remain	undefined.	If	control	reaches	the	end	of	the	
top-level	block	of	the	function	without	using	a	RETURN	statement,	a	run-time	error	occurs.	
However,	this	restriction	does	not	apply	to	functions	with	output	parameters	and	functions	
that	return	void.	In	such	a	case,	the	RETURN	statement	is	automatically	executed	when	the	
top-level	block	completes.	
For	example:	

-- functions returning a scalar type	
RETURN 1 + 2;	
RETURN scalar_var;	
	
-- functions returning a composite type	
RETURN composite_type_var;	
RETURN (1, 2, 'three'::text); -- must cast columns to correct types	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

2. RETURN	NEXT	and	RETURN	QUERY	

RETURN NEXT expression;	
RETURN QUERY query;	
RETURN QUERY EXECUTE command-string [USING expression [, ...]];	

If	a	PL/pgSQL	function	is	declared	to	return	SETOF	sometype,	you	should	follow	a	slightly-
different	procedure.	In	such	a	case,	the	individual	items	to	be	returned	are	specified	in	the	
order	of	RETURN NEXT	or	RETURN QUERY,	and	the	final	RETURN	command	without	arguments	
is	used	to	indicate	that	execution	of	the	function	is	complete.	RETURN NEXT	can	be	used	with	
both	scalar	and	complex	data	types.	The	entire	"table"	of	the	result	is	returned	as	a	
composite	result	type.	RETURN QUERY	adds	the	result	of	executing	the	query	to	the	result	set	
of	the	function.	RETURN NEXT	and	RETURN QUERY	can	be	mixed	freely	in	a	single	set-
returning	function,	in	which	case	the	results	are	concatenated.	

RETURN NEXT	and	RETURN QUERY	are	not	actually	returned	by	a	function.	You	can	simply	add	
zero	or	more	rows	to	the	result	set	of	the	function.	Execution	continues	with	the	next	
statement	of	the	PL/pgSQL	function.	The	result	set	is	built	when	a	sequential	RETURN NEXT	
or	RETURN QUERY	command	is	executed.	The	last	return	that	should	have	no	argument	
causes	control	to	terminate	the	function	(or	control	may	reach	the	end	of	the	function).	

RETURN QUERY	has	a	variant	RETURN QUERY EXECUTE	that	specifies	the	queries	to	be	
executed	dynamically.	Parameter	expressions,	like	EXECUTE,	can	be	inserted	into	a	query	
string	computed	via	USING.	

If	you	declare	a	function	using	an	output	parameter,	you	should	write	RETURN NEXT	without	
an	expression.	At	each	run,	the	current	value	of	the	output	parameter	variable	is	stored	for	
the	final	return	of	the	result	row.	If	there	are	multiple	output	parameters,	declare	a	
function	that	returns	a	SETOF	record;	if	there	is	only	one	output	parameter	of	type	
sometype,	then	you	should	declare	SETOF	sometype	to	create	a	set-returning	function	using	
the	output	parameter.	

The	following	is	an	example	of	a	function	that	uses	RETURN NEXT.	

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT);	
INSERT INTO foo VALUES (1, 2, 'three');	
INSERT INTO foo VALUES (4, 5, 'six');	
	
CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS	
$BODY$	
DECLARE	
 r foo%rowtype;	
BEGIN	
 FOR r IN	
 SELECT * FROM foo WHERE fooid > 0	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 LOOP	
 -- can do some processing here	
 RETURN NEXT r; -- return current row of SELECT	
 END LOOP;	
 RETURN;	
END	
$BODY$	
LANGUAGE plpgsql;	
	
SELECT * FROM get_all_foo();	

Here	is	an	example	of	a	function	that	uses	RETURN QUERY.	

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS	
$BODY$	
BEGIN	
 RETURN QUERY SELECT flightid	
 FROM flight	
 WHERE flightdate >= $1	
 AND flightdate < ($1 + 1);	
	
 -- Since execution is not finished, we can check whether rows were return
ed	
 -- and raise exception if not.	
 IF NOT FOUND THEN	
 RAISE EXCEPTION 'No flight at %.', $1;	
 END IF;	
	
 RETURN;	
 END	
$BODY$	
LANGUAGE plpgsql;	
	
-- Returns available flights or raises exception if there are no	
-- available flights.	
SELECT * FROM get_available_flightid(CURRENT_DATE);	

Note: As described hereinabove, the current implementation of RETURN NEXT and RETURN QUERY stores the
entire result set before the function is returned. In other words, performance can be degraded if a PL/pgSQL
function generates a very large result set. Data is written to disk to avoid memory depletion, but the function itself
is not returned until the entire result set is created. The point at which the current data begins to be written to disk
is controlled by the work_mem configuration variable. Administrators having memory large enough to store a
bigger volume of result sets should increase this parameter.

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Simple	loop	
By	using	the	LOOP,	EXIT,	CONTINUE,	WHILE,	FOR,	and	FOREACH	statements,	you	can	collate	a	
series	of	commands	so	that	the	PL/pgSQL	function	can	repeat	them.	

1. LOOP	

[<<label>>]	
LOOP	
 statements	
END LOOP [label];	

LOOP	defines	an	unconditional	loop	that	repeats	indefinitely	until	terminated	by	an	EXIT	or	
RETURN	statement.	Optional	label	is	used	by	EXIT	and	CONTINUE	statements	within	the	
nested	loop	to	specify	the	loop	to	which	the	statement	refers.	

2. EXIT	

EXIT [label] [WHEN boolean-expression];	

If	label	is	not	specified,	the	innermost	loop	is	terminated	and	the	statement	following	END
LOOP	is	executed	next.	The	given	label	should	be	a	label	of	the	current	or	some	outer	level	
of	the	nested	loop	or	block.	Then	the	named	loop	or	block	is	terminated	and	the	statement	
continues	after	the	corresponding	END	of	the	loop/block.	

If	WHEN	is	specified,	loop	terminates	only	if	boolean-expression	is	true.	Otherwise,	control	
passes	to	the	statement	after	EXIT.	

EXIT	can	be	used	in	any	type	of	loop.	It	is	not	limited	to	the	use	with	an	unconditional	loop.	

When	used	with	a	BEGIN	block,	EXIT	passes	control	to	the	next	statement	after	the	block	
terminates.	Label	should	be	used	for	this	purpose.	EXIT	without	label	is	not	considered	to	
match	the	BEGIN	block.	

Here	is	an	example:	

LOOP	
 -- some computations	
 IF count > 0 THEN	
 EXIT; -- exit loop	
 END IF;	
END LOOP;	
	
LOOP	
 -- some computations	
 EXIT WHEN count > 0; -- same result as previous example	
END LOOP;	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	
BEGIN	
 -- some computations	
 IF stocks > 100000 THEN	
 EXIT ablock; -- causes exit from the BEGIN block	
 END IF;	
 -- computations here will be skipped when stocks > 100000	
END;	

3. CONTINUE	

CONTINUE [label] [WHEN boolean-expression];	

If	label	is	not	given,	the	next	iteration	of	the	innermost	loop	begins.	That	is,	loop	control	is	
returned	(if	any)	to	skip	all	remaining	statements	in	the	loop	body	and	to	determine	if	
another	loop	iteration	is	needed.	If	label	is	present,	specify	label	of	the	loop	to	be	
continued.	

With	WHEN	specified,	the	next	iteration	of	the	loop	starts	only	if	boolean-expression	is	true.	
Otherwise,	control	passes	to	the	statement	following	CONTINUE.	

CONTINUE	can	be	used	in	any	type	of	loop.	It	is	not	limited	to	the	use	with	an	unconditional	
loop.	

Here	is	an	example:	

LOOP	
 -- some computations	
 EXIT WHEN count > 100;	
 CONTINUE WHEN count < 50;	
 -- some computations for count IN [50 .. 100]	
END LOOP;	

4. WHILE	

[<<label>>]	
WHILE boolean-expression LOOP	
 statements	
END LOOP [label];	

The	WHILE	statement	repeats	a	series	of	statements	as	long	as	boolean-expression	is	
evaluated	to	be	true.	Expressions	are	checked	just	before	each	item	in	the	loop	body.	

Here	is	an	example:	

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP	
 -- some computations here	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

END LOOP;	
	
WHILE NOT done LOOP	
 -- some computations here	
END LOOP;	

5. FOR(Integer	Variant)	

[<<label>>]	
FOR name IN [REVERSE] expression .. expression [BY expression] LOOP	
 statements	
END LOOP [label];	

This	type	of	FOR	creates	a	loop	that	iterates	over	a	range	of	integers.	Variable	names	are	
automatically	defined	as	integer	types	and	exist	only	inside	a	loop	(existing	definitions	of	
variable	names	are	ignored	in	the	loop).	Two	expressions	representing	the	upper	and	
lower	bounds	of	the	range	are	evaluated	once	when	they	enter	the	loop.	If	a	BY	clause	is	not	
specified,	the	iteration	step	is	1;	if	specified,	the	value	specified	in	the	BY	clause	is	evaluated	
once	in	the	loop	entry.	If	REVERSE	is	specified,	step	value	is	not	added	but	subtracted	after	
each	time	of	iteration.	

Some	examples	of	integer	FOR	loops:	

FOR i IN 1..10 LOOP	
 -- i will take on the values 1,2,3,4,5,6,7,8,9,10 within the loop	
END LOOP;	
	
FOR i IN REVERSE 10..1 LOOP	
 -- i will take on the values 10,9,8,7,6,5,4,3,2,1 within the loop	
END LOOP;	
	
FOR i IN REVERSE 10..1 BY 2 LOOP	
 -- i will take on the values 10,8,6,4,2 within the loop	
END LOOP;	

If	the	lower	bound	is	greater	than	the	upper	bound	(or	less	than	REVERSE),	the	loop	body	
is	never	executed.	No	error	occurs.	

When	a	label	is	connected	to	a	FOR	loop,	the	integer	loop	variable	can	be	referenced	with	
the	specified	name	using	that	label.	

Loop	through	query	results	
Other	types	of	FOR	loops	allow	you	to	iterate	over	the	query	results	and	manipulate	the	
data	accordingly.	The	syntax	is	as	follows:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

[<<label>>]	
FOR target IN query LOOP	
 statements	
END LOOP [label];	

target	is	a	record	variable,	a	row	variable,	or	a	comma-delimited	list	of	scalar	variables.	
target	is	assigned	to	each	row	of	the	query	result	successively,	and	each	row	of	the	loop	
body	is	executed.	Here	is	an	example:	

CREATE FUNCTION cs_refresh_mviews() RETURNS integer AS $$	
DECLARE	
 mviews RECORD;	
BEGIN	
 RAISE NOTICE 'Refreshing materialized views...';	
	
 FOR mviews IN SELECT * FROM cs_materialized_views ORDER BY sort_key LOOP	
	
 -- Now "mviews" has one record from cs_materialized_views	
	
 RAISE NOTICE 'Refreshing materialized view %s ...', quote_ident(mview
s.mv_name);	
 EXECUTE format('TRUNCATE TABLE %I', mviews.mv_name);	
 EXECUTE format('INSERT INTO %I %s', mviews.mv_name, mviews.mv_query);	
 END LOOP;	
	
 RAISE NOTICE 'Done refreshing materialized views.';	
 RETURN 1;	
END;	
$$ LANGUAGE plpgsql;	

If	the	loop	is	terminated	by	an	EXIT	statement,	you	can	still	access	the	last-assigned	row	
value	after	the	loop.	

The	query	used	in	the	FOR	statement	type	can	be	any	SQL	command	that	returns	a	row	to	
the	caller.	SELECT	is	the	most	common	case,	but	you	can	also	use	INSERT,	UPDATE,	or	DELETE	
with	RETURNING.	Some	utility	commands	such	as	EXPLAIN	also	work.	

PL/pgSQL	variables	are	replaced	by	query	text	and	the	query	plan	is	cached	for	possible	
reuse.	

The	FOR-IN-EXECUTE	statement	is	another	way	to	iterate	through	rows.	

[<<label>>]	
FOR target IN EXECUTE text_expression [USING expression [, ...]] LOOP	
 statements	
END LOOP [label];	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

This	statement	is	the	same	as	the	previous	form,	except	that	the	source	query	is	specified	in	
a	string	expression	that	is	evaluated	and	rescored	in	each	item	of	the	FOR	loop.	This	allows	
the	programmer	to	choose	the	speed	of	pre-planned	queries	or	flexibility	of	dynamic	
queries,	just	like	a	normal	EXECUTE	statement.	Like	EXECUTE,	parameter	values	can	be	
inserted	into	dynamic	commands	via	USING.	

Another	way	to	specify	a	query	that	needs	to	repeat	the	result	is	to	declare	it	as	cursor.	

Loop	through	array	
The	FOREACH	loop	is	very	similar	to	the	FOR	loop,	but	it	iterates	through	the	elements	of	the	
array	value,	instead	of	repeating	the	rows	returned	by	the	SQL	query.	Typically,	FOREACH	is	
used	to	iterate	through	the	components	of	a	composite	value	expression.	Variants	that	
repeat	complexes	other	than	arrays	can	be	added	later.	

A	FOREACH	statement	that	iterates	through	the	array:	

[<<label>>]	
FOREACH target [SLICE number] IN ARRAY expression LOOP	
 statements	
END LOOP [label];	

If	SLICE	is	not	present	or	SLICE0	is	specified,	the	loop	iterates	over	the	individual	elements	
of	the	array	created	by	evaluating	expression.	In	the	target	variable,	each	element	value	is	
specified	in	order,	and	the	loop	body	is	executed	for	each	element.	The	following	is	an	
example	of	iterating	over	an	array	element.	

CREATE FUNCTION sum(int[]) RETURNS int8 AS $$	
DECLARE	
 s int8 := 0;	
 x int;	
BEGIN	
 FOREACH x IN ARRAY $1	
 LOOP	
 s := s + x;	
 END LOOP;	
 RETURN s;	
END;	
$$ LANGUAGE plpgsql;	

Elements	are	stored	in	storage	order	regardless	of	the	number	of	dimensions	of	the	array.	
target	is	usually	a	single	variable,	but	it	can	be	a	list	of	variables	when	repeating	
composite	value	arrays.	In	such	a	case,	for	each	array	element,	the	variables	are	assigned	in	
consecutive	columns	of	composite	values.	

If	the	SLICE	value	is	positive,	FOREACH	repeats	the	slice	of	the	array	rather	than	a	single	
element.	The	SLICE	value	should	be	an	integer	constant	that	is	not	greater	than	the	number	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

of	dimensions	of	the	array.	target	variable	should	be	an	array	and	receive	successive	slices	
of	the	array	value.	Each	slice	is	the	number	of	dimensions	specified	by	SLICE.	The	following	
is	an	example	of	repeating	a	one-dimensional	slice.	

CREATE FUNCTION scan_rows(int[]) RETURNS void AS $$	
DECLARE	
 x int[];	
BEGIN	
 FOREACH x SLICE 1 IN ARRAY $1	
 LOOP	
 RAISE NOTICE 'row = %', x;	
 END LOOP;	
END;	
$$ LANGUAGE plpgsql;	
	
SELECT scan_rows(ARRAY[[1,2,3],[4,5,6],[7,8,9],[10,11,12]]);	
	
NOTICE: row = {1,2,3}	
NOTICE: row = {4,5,6}	
NOTICE: row = {7,8,9}	
NOTICE: row = {10,11,12}	

Cursors

Instead	of	running	the	entire	query	at	once,	you	can	set	cursors	to	encapsulate	the	query	
and	then	read	a	few	lines	of	the	query	results	at	a	time.	A	reason	for	doing	this	is	to	avoid	
memory	overrun	when	the	result	contains	a	large	number	of	rows.	(However,	PL/pgSQL	
users	generally	do	not	have	to	worry	about	this	as	FOR	loops	use	cursors	internally	to	avoid	
memory	problems.)	More	interesting	way	of	use	is	to	return	a	reference	to	the	cursor	
where	a	function	was	created	so	that	the	caller	can	read	the	line.	By	doing	so,	it	provides	an	
efficient	way	to	return	a	large	row	set	from	a	function.	

Declaring	cursor	variables	
All	access	to	PL/pgSQL	cursors	is	always	performed	via	cursor	variables,	which	are	special	
data	type	refcursor.	One	way	to	create	a	cursor	variable	is	to	declare	it	as	a	variable	of	
type	refcursor.	Another	way	to	do	this	is	to	use	the	following	cursor	declaration	syntax:	

name [[NO] SCROLL] CURSOR [(arguments)] FOR query;	

When	SCROLL	is	specified,	the	cursor	may	scroll	backward.	If	NO SCROLL	is	specified,	the	
reverse	fetch	is	denied.	If	this	option	is	not	specified,	it	depends	on	the	query	whether	
reverse	fetching	is	allowed	or	not.	If	argument	is	specified,	it	is	a	comma-separated	list	of	
name data type pairs	and	defines	the	name	to	be	substituted	for	the	parameter	value	in	
the	specified	query.	The	actual	value	to	replace	this	name	is	specified	later	when	the	cursor	
is	opened.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Here	is	an	example:	

DECLARE	
 curs1 refcursor;	
 curs2 CURSOR FOR SELECT * FROM tenk1;	
 curs3 CURSOR (key integer) FOR SELECT * FROM tenk1 WHERE unique1 = key;	

All	three	of	these	variables	have	a	refcursor	data	type,	but	the	first	query	can	be	used	with	
all	queries,	the	second	query	bounds	a	fully	specified	query,	and	the	last	query	has	a	
parameterized	query	bound.	(The	key	is	replaced	with	the	integer	parameter	value	when	
the	cursor	is	opened.)	The	variable	curs1	is	called	unbound	because	it	is	not	bound	to	a	
particular	query.	

Opening	cursors	
To	use	a	cursor	to	search	for	a	row,	the	cursor	should	be	already	open.	PL/pgSQL	supports	
three	types	of	OPEN	statements,	two	of	which	use	unbound	cursor	variables	and	the	third	
use	bound	cursor	variables.	

Note: Bound cursor variables can be used without explicitly opening cursors.

1. OPEN	FOR	query	

OPEN unbound_cursorvar [[NO] SCROLL] FOR query;	

The	cursor	variable	is	opened	and	the	specified	query	is	executed.	The	cursor	can	no	longer	
be	opened,	and	it	should	be	declared	as	an	unbound	cursor	variable	(i.e.	a	simple	
refcursor	variable).	The	query	should	be	SELECT	or	something	else	that	returns	a	row	
(such	as	EXPLAIN).	Queries	are	handled	in	the	same	way	as	other	PL/pgSQL	SQL	commands.	
The	PL/pgSQL	variable	name	is	replaced,	and	the	query	plan	is	cached	for	possible	reuse.	
When	the	PL/pgSQL	variable	is	replaced	with	a	cursor	query,	the	value	to	be	replaced	is	the	
value	at	the	time	of	OPEN.	Subsequent	changes	to	the	variable	do	not	affect	the	behavior	of	
the	cursor.	The	SCROLL	and	NO SCROLL	options	have	the	same	meaning	as	in	the	bound	
cursors.	

Here	is	an	example:	

OPEN curs1 FOR SELECT * FROM foo WHERE key = mykey;	

2. OPEN	FOR	EXECUTE	

OPEN unbound_cursorvar [[NO] SCROLL] FOR EXECUTE query_string	
 [USING expression [, ...]];	

The	cursor	variable	is	opened	and	the	specified	query	is	executed.	The	cursor	can	no	longer	
be	opened,	and	it	should	be	declared	as	an	unbound	cursor	variable	(i.e.	a	simple	
refcursor	variable).	The	query	is	specified	in	a	string	expression	in	the	same	way	as	in	
EXECUTE.	As	always,	this	provides	flexibility;	this	means	that	the	query	plan	can	vary	each	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

time	of	execution	and	variable	substitution	is	not	performed	in	the	command	string.	Like	
EXECUTE,	parameter	values	can	be	inserted	into	dynamic	commands	via	format()	and	
USING.	The	SCROLL	and	NO SCROLL	options	have	the	same	meaning	as	bound	cursors.	

Here	is	an	example:	

OPEN curs1 FOR EXECUTE format('SELECT * FROM %I WHERE col1 = $1',tabname) USI
NG keyvalue;	

In	this	example,	the	table	name	is	inserted	into	the	query	via	format().	As	the	comparison	
value	of	col1	is	inserted	via	USING,	no	quotes	are	required.	

3. Opening	bounding	cursors	

OPEN bound_cursorvar [([argument_name :=] argument_value [, ...])];	

This	OPEN	format	is	used	when	a	query	is	declared	to	open	a	cursor	variable	to	which	the	
query	is	bound.	The	cursor	can	no	longer	be	opened.	The	list	of	actual	argument	value	
expressions	can	only	be	used	if	a	cursor	is	declared	to	take	an	argument.	These	values	are	
replaced	in	the	query.	

Query	plans	for	bound	cursors	are	always	considered	cacheable.	There	is	no	EXECUTE	in	this	
case.	SCROLL	and	NO SCROLL	cannot	be	specified	for	OPEN	because	the	cursor's	scroll	
behavior	has	already	been	determined.	

Argument	values	can	be	passed	using	positional	or	named	notation.	In	position	notation,	all	
arguments	are	specified	in	order.	In	named	notation,	the	names	of	each	argument	are	
specified	and	separated	from	the	argument	expression	using	:=.	Like	the	calling	function,	
you	can	use	both	positional	notation	and	named	notation	together.	

Here's	an	example	(the	cursor	declaration	example	above	is	used):	

OPEN curs2;	
OPEN curs3(42);	
OPEN curs3(key := 42);	

Variable	substitution	is	performed	in	the	query	of	a	bound	cursor,	which	means	there	are	
two	ways	to	pass	the	value	to	the	cursor:	explicitly	using	the	OPEN	argument,	or	implicitly	
passing	the	value	by	referencing	the	PL/pgSQL	variable	in	the	query.	However,	only	
variables	declared	before	declaration	of	the	bound	cursor	can	be	replaced	with	variables.	In	
both	cases,	the	value	to	pass	is	determined	at	the	time	of	OPEN.	For	instance,	another	way	to	
get	the	same	effect	as	the	curs3	example	above	is:	

DECLARE	
 key integer;	
 curs4 CURSOR FOR SELECT * FROM tenk1 WHERE unique1 = key;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

BEGIN	
 key := 42;	
 OPEN curs4;	

Using	cursors	
Once	a	cursor	is	open,	you	can	manipulate	it	using	the	statements	described	below.	

You	do	not	need	to	perform	this	manipulation	since	it	works	in	the	same	manner	as	when	
the	cursor	is	first	opened.	A	function	can	return	a	refcursor	value	and	allow	the	caller	to	
work	on	the	cursor.	(Internally,	the	refcursor	value	is	simply	a	string	name	of	so-called	a	
portal	containing	the	active	query	for	the	cursor,	and	can	be	assigned	to	another	refcursor	
variable).	

All	portals	are	closed	implicitly	at	the	end	of	the	transaction.	Thus,	the	value	of	refcursor	
can	be	used	to	reference	the	open	cursor	until	the	end	of	the	transaction.	

1. FETCH	

	 FETCH [direction { FROM | IN }] cursor INTO target;	

	 FETCH	fetches	the	next	row	as	the	target	of	cursor	in	a	row	variable,	a	record	variable,	
or	a	comma-separated	list	of	simple	variables,	such	as	SELECT INTO.	If	there	is	no	next	
row,	the	target	is	set	to	NULL(s).	As	with	SELECT INTO,	you	can	check	the	special	
variable	FOUND	to	see	if	you	obtained	the	row.	

	 The	direction	clause	can	be	one	of	the	variations	allowed	by	SQL	FETCH,	except	that	it	
can	fetch	a	single	row	(i.e.	NEXT,	PRIOR,	FIRST,	LAST,	ABSOLUTE	count,	RELATIVE	count,	
FORWARD,	or	BACKWARD).	Omitting	direction	is	equivalent	to	specifying	NEXT.	If	the	cursor	
is	not	declared	or	open	with	SCROLL	option,	the	direction	value	that	moves	backward	
may	fail.	

	 The	cursor	must	be	the	name	of	a	refcursor	variable	that	refers	to	the	open	cursor	
portal.	

	 Here	is	an	example:	

	 FETCH curs1 INTO rowvar;	
FETCH curs2 INTO foo, bar, baz;	
FETCH LAST FROM curs3 INTO x, y;	
FETCH RELATIVE -2 FROM curs4 INTO x;	

2. MOVE	

	 MOVE [direction { FROM | IN }] cursor;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 MOVE	relocates	a	cursor	without	retrieving	the	data.	MOVE	works	the	same	as	FETCH	
command	except	that	it	only	relocates	the	cursor	and	does	not	return	the	moved	rows.	
As	with	SELECT INTO,	you	can	check	the	special	variable	FOUND	to	see	if	there	is	a	next	
row	to	move.	

	 The	direction	clause	is	used	in	the	same	manner	as	it	is	used	in	SQL	FETCH	command	
(e.g.	NEXT,	PRIOR,	FIRST,	LAST,	ABSOLUTE	count,	RELATIVE	count,	ALL,	FORWARD	
[count|ALL]	or	BACKWARD	[count|ALL]).	Omitting	direction	is	equivalent	to	specifying	
NEXT.	If	the	cursor	is	not	declared	or	open	with	SCROLL	option,	the	direction	value	that	
moves	backward	may	fail.	
Here	is	an	example:	

	 MOVE curs1;	
MOVE LAST FROM curs3;	
MOVE RELATIVE -2 FROM curs4;	
MOVE FORWARD 2 FROM curs4;	

3. UPDATE/DELETE	WHERE	CURRENT	OF	

	 UPDATE table SET ... WHERE CURRENT OF cursor;	
DELETE FROM table WHERE CURRENT OF cursor;	

	 When	a	cursor	is	positioned	on	a	table	row,	it	can	be	identified	to	update	or	delete	the	
row	with	the	cursor.	There	is	a	restriction	on	the	cursor's	queries	(especially	not	
grouped	queries)	and	it	is	best	to	use	FOR UPDATE	on	the	cursor.	

	 Here	is	an	example:	

	 UPDATE foo SET dataval = myval WHERE CURRENT OF curs1;	

4. CLOSE	

	 CLOSE cursor;	

	 CLOSE	closes	the	default	portal	of	the	open	cursor.	It	can	be	used	to	release	cursor	
variables	that	can	release	or	reopen	resources	before	the	end	of	a	transaction.	

	 Here	is	an	example:	

	 CLOSE curs1;	

5. Returning	Cursors	
The	PL/pgSQL	function	can	return	a	cursor	to	the	caller.	This	method	is	useful	when	
returning	multiple	rows	or	columns,	especially	when	returning	a	very	large	result	set.	
To	do	this,	the	function	opens	a	cursor	and	returns	the	cursor	name	to	the	caller	(or	
simply	opens	a	cursor	using	the	name	of	the	caller	or	the	name	of	the	portal).	The	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

caller	can	fetch	rows	from	the	cursor.	The	cursor	is	closed	by	the	caller	or	
automatically	closed	when	it	is	closed.	

	 The	name	of	the	portal	used	for	a	cursor	can	be	specified	by	the	programmer	or	
automatically	generated.	To	specify	a	portal	name,	you	should	first	assign	a	string	
before	the	refcursor	variable	is	opened.	The	string	value	of	the	refcursor	variable	is	
used	as	the	name	of	the	default	portal	in	OPEN.	However,	if	the	refcursor	variable	is	
null,	OPEN	automatically	creates	a	name	that	does	not	conflict	with	the	existing	portal	
and	assigns	it	to	the	refcursor	variable.	

Note: Since the bound cursor variable is initialized to a string value representing the name, the portal name is the
same as the cursor variable name, unless the programmer ignores it through assignment before opening a cursor.
However, as the default value of the unbound cursor variable is initially set to null, it gets a unique, automatically
generated name unless ignored.

		
	The	following	example	is	a	way	a	caller	can	supply	a	cursor	name.	

CREATE TABLE test (col text);	
INSERT INTO test VALUES ('123');	
	
CREATE FUNCTION reffunc(refcursor) RETURNS refcursor AS '	
BEGIN	
 OPEN $1 FOR SELECT col FROM test;	
 RETURN $1;	
END;	
' LANGUAGE plpgsql;	
	
BEGIN;	
SELECT reffunc('funccursor');	
FETCH ALL IN funccursor;	
COMMIT;	

The	following	example	uses	automatic	cursor	name	generation.	

CREATE FUNCTION reffunc2() RETURNS refcursor AS '	
DECLARE	
 ref refcursor;	
BEGIN	
 OPEN ref FOR SELECT col FROM test;	
 RETURN ref;	
END;	
' LANGUAGE plpgsql;	
	
-- need to be in a transaction to use cursors.	
BEGIN;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

SELECT reffunc2();	
	
 reffunc2	

 <unnamed cursor 1>	
(1 row)	
	
FETCH ALL IN "<unnamed cursor 1>";	
COMMIT;	

The	following	example	is	a	way	to	return	multiple	cursors	from	a	single	function.	

CREATE FUNCTION myfunc(refcursor, refcursor) RETURNS SETOF refcursor AS $$	
BEGIN	
 OPEN $1 FOR SELECT * FROM table_1;	
 RETURN NEXT $1;	
 OPEN $2 FOR SELECT * FROM table_2;	
 RETURN NEXT $2;	
END;	
$$ LANGUAGE plpgsql;	
	
-- need to be in a transaction to use cursors.	
BEGIN;	
	
SELECT * FROM myfunc('a', 'b');	
	
FETCH ALL FROM a;	
FETCH ALL FROM b;	
COMMIT;	

Loop	through	cursor	results	
There	is	a	FOR	statement	(example	below)	that	can	iterate	through	the	rows	returned	by	
the	cursor.	

[<<label>>]	
FOR recordvar IN bound_cursorvar [([argument_name :=] argument_value [,
 ...])] LOOP	
 statements	
END LOOP [label];	

The	cursor	variable	should	be	bound	to	some	query	when	it	is	declared	and	should	not	be	
already	open.	The	FOR	statement	automatically	opens	a	cursor	and	closes	it	when	the	loop	
ends.	The	list	of	actual	argument	values	should	appear	only	if	the	cursor	is	declared	to	take	
an	argument.	This	value	is	replaced	in	the	query	in	the	same	way	as	OPEN.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

The	recordvar	variable	is	automatically	defined	as	type	record	and	exists	only	in	the	loop	
(the	existing	definition	of	the	variable	name	is	ignored	in	the	loop).	Each	row	returned	by	
the	cursor	is	assigned	to	this	record	variable	and	the	loop	body	is	executed.	

Errors and Messages

Reporting	errors	and	messages	
You	may	use	the	RAISE	statement	to	report	messages	and	causes	errors.	

RAISE [level] 'format' [, expression [, ...]] [USING option = expression
[, ...]];	
RAISE [level] condition_name [USING option = expression [, ...]];	
RAISE [level] SQLSTATE 'sqlstate' [USING option = expression [, ...]];	
RAISE [level] USING option = expression [, ...];	
RAISE ;	

The	level	option	specifies	the	severity	of	the	error.	Allowable	levels	are	DEBUG,	LOG,	INFO,	
NOTICE,	WARNING,	and	EXCEPTION	(EXCEPTION	is	the	default).	EXCEPTION	causes	an	error	
(usually	aborting	the	current	transaction).	The	other	levels	generate	only	messages	of	
different	priority	levels.	Whether	messages	of	a	particular	priority	are	reported	to	the	
client,	or	recorded	in	the	server	log	can	be	controlled	by	the	log_min_messages	and	
client_min_messages	configuration	variables.	

If	there	is	level,	you	can	create	a	format	(it	must	be	a	simple	string	literal,	not	an	
expression).	A	format	string	specifies	the	error	message	text	to	report.	Following	the	
format	string,	an	optional	argument	expression	can	be	inserted	after	the	message.	Within	
the	format	string,	%	is	replaced	by	the	string	expressions	of	the	following	optional	argument	
values:	To	print	a	literal	%,	you	should	write	%%.	The	number	of	arguments	should	match	the	
number	of	%	placeholders	in	the	format	string;	if	not,	an	error	will	occur	while	compiling	
the	function.	

In	this	example,	the	value	of	v_job_id	replaces	%	of	the	string.	

RAISE NOTICE 'Calling cs_create_job(%)', v_job_id;	

You	can	attach	additional	information	to	the	error	report	by	writing	an	option =
expression	entry	after	USING.	Each	expression	can	be	a	string	value	expression.	The	
allowable	option	keywords	include:	

• MESSAGE	
Sets	the	error	message	text.	This	option	cannot	be	used	in	a	RAISE	format	that	includes	
format	strings	before	USING.	
	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• DETAIL	
Provides	a	detailed	error	message.	
	

• HINT	
Provides	a	hint	message.	
	

• ERRCODE	
Specifies	the	error	code	(SQLSTATE)	to	be	reported	directly	by	condition	name	or	with	
a	5-digit	SQLSTATE	code.	
	

• COLUMN,	CONSTRAINT,	DATATYPE,	TABLE,	SCHEMA	
Provides	the	names	of	the	related	objects.	

This	example	stops	a	transaction	with	a	given	error	message	and	a	hint.	

RAISE EXCEPTION 'Nonexistent ID --> %', user_id	
 USING HINT = 'Please check your user ID';	

These	two	examples	show	an	identical	way	of	setting	SQLSTATE.	

RAISE 'Duplicate user ID: %', user_id USING ERRCODE = 'unique_violation';	
RAISE 'Duplicate user ID: %', user_id USING ERRCODE = '23505';	

There	is	a	second	RAISE	statement	for	which	the	main	argument	is	the	condition	name	or	
SQLSTATE	to	be	reported.	For	example:	

RAISE unique_violation USING MESSAGE = 'Duplicate user ID: ' || user_id;	

Another	way	is	to	create	RAISE USING	or	RAISE	level	USING	and	put	everything	else	in	the	
USING	list.	The	last	variant	of	RAISE	has	no	parameters	at	all.	This	format	can	be	used	only	
within	the	EXCEPTION	clause	of	a	BEGIN	block.	Re-generate	the	error	currently	being	
processed.	

If	no	condition	name	or	SQLSTATE	is	specified	in	RAISE_EXCEPTION (P0001)	command,	
RAISE_EXCEPTION (P0001)	is	used	by	default.	If	the	message	text	is	not	specified,	the	
message	name	becomes	the	condition	name	or	SQLSTATE	by	default.	

Note: If you specify a SQLSTATE code as the error code, you can select an error code that is not limited to the
predefined error code(s) but consists of a five-digit number and/or uppercase ASCII characters (except 00000). As
the three zero-terminated error codes are category codes, error codes are generated when they can only be
trapped by trapping the entire category.

Verifying	assertion	
The	ASSERT	statement	is	a	convenient	shorthand	for	inserting	debugging	checks	into	
PL/pgSQL	functions.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

ASSERT condition [, message];	

condition	is	a	Boolean	expression	that	is	always	expected	to	be	asserted	to	true.	If	true,	no	
ASSERT	statement	is	executed;	if	false	or	null,	an	ASSERT_FAILURE	exception	is	thrown.	(If	
an	error	occurs	while	asserting	the	condition,	it	is	reported	as	a	normal	error.)	

With	an	optional	message	given,	if	condition	fails,	the	result	(if	not	null)	replaces	the	
default	error	message	text	"assertion	failed."	If	the	assertion	is	successful,	the	*message*	
expression	is	not	performed.	

ASSERT	tests	can	be	enabled	or	disabled	via	the	configuration	parameter	
plpgsql.check_asserts,	which	uses	boolean	values;	the	default	is	on.	If	this	parameter	is	
off,	the	ASSERT	statement	does	nothing.	

ASSERT	is	intended	to	detect	program	bugs,	not	to	report	common	error	conditions.	Use	the	
RAISE	statement	described	above	for	reporting	errors.	

Trigger Procedures

PL/pgSQL	can	be	used	to	define	trigger	procedures	for	data	changes	or	database	events.	A	
trigger	procedure	is	created	with	CREATE	FUNCTION	(command);	it	does	not	have	any	
argument	and	is	declared	with	a	return	type	of	trigger	(in	the	case	of	data	change	triggers)	
or	event_trigger	(in	the	case	of	database	event	triggers).	A	special	local	variable	called	
PG_something	is	automatically	defined	to	describe	the	condition	that	triggered	the	call.	

Data	change	triggers	
A	data	change	trigger	is	declared	as	a	function	with	a	return	type	of	trigger	without	
arguments.	The	function	should	be	declared	without	arguments,	even	if	it	is	expected	to	
receive	the	arguments	specified	in	CREATE TRIGGER.	These	arguments	are	passed	through	
TG_ARGV	as	described	below.	

When	the	PL/pgSQL	function	is	called	by	trigger,	several	special	variables	are	automatically	
created	in	the	top-level	block;	the	created	items	are	as	follows:	

• NEW	
Data	type	RECORD;	variable	that	holds	new	database	rows	on	INSERT/UPDATE	
operations	on	row-level	triggers.	This	variable	is	not	specified	for	statement-level	
triggers	and	DELETE	operation.	

• OLD	
Data	type	RECORD;	variable	that	holds	old	database	row	on	UPDATE/DELETE	operation	
on	the	row	level	triggers.	This	variable	is	not	specified	for	statement-level	triggers	and	
INSERT	operation.	

• TG_NAME	
Data	type	name;	variable	that	contains	the	name	of	the	trigger	actually	fired.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• TG_WHEN	
Data	type	text;	a	string	of	BEFORE,	AFTER,	or	INSTEAD OF,	depending	on	the	trigger	
definition.	
	

• TG_LEVEL	
Data	type	text;	a	string	of	ROW	or	STATEMENT,	depending	on	the	trigger	definition.	
	

• TG_OP	
Data	type	text;	a	string	of	INSERT,	UPDATE,	DELETE,	or	TRUNCATE	telling	for	which	
operation	the	trigger	is	actually	fired.	
	

• TG_RELID	
Data	type	oid;	the	object	ID	of	the	table	that	caused	the	trigger	invocation.	
	

• TG_TABLE_NAME	
Data	type	name;	the	name	of	the	table	that	caused	the	trigger	invocation.	
	

• TG_TABLE_SCHEMA	
Data	type	name;	the	schema	name	of	the	table	that	caused	the	trigger	call.	
	

• TG_NARGS	
Data	type	integer;	the	number	of	arguments	given	to	the	trigger	procedure	in	the	
CREATE TRIGGER	statement.	
	

• TG_ARGV[]	
Data	type	text;	the	argument	index	of	the	CREATE TRIGGER	statement	is	zero-based.	
Invalid	indices	(less	than	0	or	greater	than	or	equal	to	tg_nargs)	result	in	a	NULL	
value.	

A	trigger	function	must	return	NULL	or	a	record/row	value	that	exactly	matches	the	
structure	of	the	table	on	which	the	trigger	was	executed.	

A	row-level	trigger	triggered	by	BEFORE	can	return	null	to	signal	the	trigger	manager	to	skip	
the	rest	of	the	work	for	this	row	(i.e.	no	subsequent	trigger	is	executed	and	
INSERT/UPDATE/DELETE	of	this	row	will	not	occur).	If	nonnull	is	returned,	the	job	advances	
to	the	corresponding	row	value.	Returning	a	row	value	different	from	the	original	value	of	
NEW	changes	the	row	to	be	inserted	or	updated.	Accordingly,	if	the	trigger	function	does	not	
change	the	row	value	and	you	want	the	triggering	action	to	succeed	normally,	NEW	(or	its	
corresponding	value)	should	be	returned.	It	is	possible	to	change	the	row	to	be	saved	by	
modifying	a	single	value	directly	from	NEW	and	returning	a	modified	NEW	or	by	creating	a	
completely-new	record/row	to	be	returned.	In	the	case	of	before-trigger	of	DELETE,	the	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

return	value	does	not	have	a	direct	effect,	but	should	not	be	null	to	continue	the	triggering	
operation.	As	NEW	is	null	in	DELETE	trigger,	returning	is	meaningless	in	general.	A	common	
idiom	for	DELETE	trigger	is	to	return	OLD.	

An	INSTEAD OF	trigger	(which	is	always	a	row-level	trigger	and	can	only	be	used	in	a	view)	
can	return	null	to	indicate	that	no	update	has	been	made;	skipping	the	rest	of	the	work	for	
this	row	should	be	possible	(e.g.	the	trigger	will	not	start	and	the	row	will	not	be	calculated	
when	it	is	affected	by	surrounding	INSERT/UPDATE/DELETE).	Otherwise,	a	non-null	value	
should	be	returned	to	indicate	that	the	trigger	has	performed	the	requested	operation.	The	
return	value	should	be	NEW	in	the	case	of	INSERT	and	UPDATE	operations,	and	the	trigger	
function	can	be	modified	to	support	INSERT RETURNING	and	UPDATE RETURNING	(this	affects	
the	row	values	passed	to	the	subsequent	trigger,	or	is	passed	by	the	specific	EXCLUDED	alias	
reference	contained	in	the	ON CONFLICT DO UPDATE	clause	of	the	INSERT	statement).	For	
DELETE	operation,	the	return	value	should	be	OLD.	

The	return	value	of	a	row-level	trigger	executed	after	BEFORE	or	AFTER	is	always	ignored.	It	
may	be	null.	However,	if	any	of	these	types	of	triggers	fail,	the	entire	operation	can	be	
suspended.	

The	following	example	shows	an	example	of	a	trigger	procedure	in	PL/pgSQL.	
This	trigger	in	the	example	below	allows	the	current	user	name	and	time	to	be	stamped	on	
a	row	whenever	a	row	is	inserted	or	updated	in	the	table.	Make	sure	the	employee's	name	
is	given	and	the	salary	is	positive	(number).	

CREATE TABLE emp (
 empname text,	
 salary integer,	
 last_date timestamp,	
 last_user text	
);	
	
CREATE FUNCTION emp_stamp() RETURNS trigger AS emp_stamp	
 BEGIN	
 -- Check that empname and salary are given	
 IF NEW.empname IS NULL THEN	
 RAISE EXCEPTION 'empname cannot be null';	
 END IF;	
 IF NEW.salary IS NULL THEN	
 RAISE EXCEPTION '% cannot have null salary', NEW.empname;	
 END IF;	
	
 -- Who works for us when they must pay for it?	
 IF NEW.salary < 0 THEN	
 RAISE EXCEPTION '% cannot have a negative salary', NEW.empname;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 END IF;	
	
 -- Remember who changed the payroll when	
 NEW.last_date := current_timestamp;	
 NEW.last_user := current_user;	
 RETURN NEW;	
 END;	
emp_stamp LANGUAGE plpgsql;	
	
CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp	
 FOR EACH ROW EXECUTE PROCEDURE emp_stamp();	

Another	way	to	log	changes	to	a	table	is	to	create	a	new	table	that	holds	rows	for	each	
insert,	update,	or	delete.	This	approach	can	be	thought	of	as	auditing	any	changes	of	the	
table.	The	following	example	shows	an	example	of	an	audit	trigger	procedure	in	PL/pgSQL.	
This	example	trigger	causes	the	row	insert,	update,	or	delete	in	emp	table	to	be	written	to	
the	emp_audit	table.	The	current	time	and	user	name	are	stamped	on	the	row	together	with	
the	type	of	the	operation	performed.	

CREATE TABLE emp (
 empname text NOT NULL,	
 salary integer	
);	
	
CREATE TABLE emp_audit(
 operation char(1) NOT NULL,	
 stamp timestamp NOT NULL,	
 userid text NOT NULL,	
 empname text NOT NULL,	
 salary integer	
);	
	
CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS emp_audit	
 BEGIN	
 --	
 -- Create a row in emp_audit to reflect the operation performed on em
p,	
 -- make use of the special variable TG_OP to work out the operation.	
 --	
 IF (TG_OP = 'DELETE') THEN	
 INSERT INTO emp_audit SELECT 'D', now(), user, OLD.*;	
 RETURN OLD;	
 ELSIF (TG_OP = 'UPDATE') THEN	
 INSERT INTO emp_audit SELECT 'U', now(), user, NEW.*;	
 RETURN NEW;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 ELSIF (TG_OP = 'INSERT') THEN	
 INSERT INTO emp_audit SELECT 'I', now(), user, NEW.*;	
 RETURN NEW;	
 END IF;	
 RETURN NULL; -- result is ignored since this is an AFTER trigger	
 END;	
emp_audit LANGUAGE plpgsql;	
	
CREATE TRIGGER emp_audit	
AFTER INSERT OR UPDATE OR DELETE ON emp	
 FOR EACH ROW EXECUTE PROCEDURE process_emp_audit();	

A	variation	on	the	previous	example	indicates	when	each	entry	was	last	modified	by	using	
view	that	joins	the	main	table	to	the	audit	table.	This	approach	still	logs	the	entire	audit	
trail	of	changes	to	the	table,	but	provides	a	brief	view	of	the	audit	trail,	showing	only	the	
last	modified	timestamp	derived	from	the	audit	trail	for	each	entry.	The	following	example	
shows	an	example	of	an	audit	trigger	on	view	in	PL/pgSQL.	
	This	example	allows	view	to	use	a	trigger	to	update	the	view	and	to	make	inserting,	
updating,	or	deleting	rows	of	the	view	to	be	written	to	the	emp_audit	table.	The	current	
time	and	user	name	are	recorded	with	the	type	of	operation	performed,	and	the	view	
shows	the	last	modification	time	of	each	row.	

CREATE TABLE emp (
 empname text PRIMARY KEY,	
 salary integer	
);	
	
CREATE TABLE emp_audit(
 operation char(1) NOT NULL,	
 userid text NOT NULL,	
 empname text NOT NULL,	
 salary integer,	
 stamp timestamp NOT NULL	
);	
	
CREATE VIEW emp_view AS	
 SELECT e.empname,	
 e.salary,	
 max(ea.stamp) AS last_updated	
 FROM emp e	
 LEFT JOIN emp_audit ea ON ea.empname = e.empname	
 GROUP BY 1, 2;	
	
CREATE OR REPLACE FUNCTION update_emp_view() RETURNS TRIGGER AS $$	
 BEGIN	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 --	
 -- Perform the required operation on emp, and create a row in emp_aud
it	
 -- to reflect the change made to emp.	
 --	
 IF (TG_OP = 'DELETE') THEN	
 DELETE FROM emp WHERE empname = OLD.empname;	
 IF NOT FOUND THEN RETURN NULL; END IF;	
	
 OLD.last_updated = now();	
 INSERT INTO emp_audit VALUES('D', user, OLD.*);	
 RETURN OLD;	
 ELSIF (TG_OP = 'UPDATE') THEN	
 UPDATE emp SET salary = NEW.salary WHERE empname = OLD.empname;	
 IF NOT FOUND THEN RETURN NULL; END IF;	
	
 NEW.last_updated = now();	
 INSERT INTO emp_audit VALUES('U', user, NEW.*);	
 RETURN NEW;	
 ELSIF (TG_OP = 'INSERT') THEN	
 INSERT INTO emp VALUES(NEW.empname, NEW.salary);	
	
 NEW.last_updated = now();	
 INSERT INTO emp_audit VALUES('I', user, NEW.*);	
 RETURN NEW;	
 END IF;	
 END;	
$$ LANGUAGE plpgsql;	
	
CREATE TRIGGER emp_audit	
INSTEAD OF INSERT OR UPDATE OR DELETE ON emp_view	
 FOR EACH ROW EXECUTE PROCEDURE update_emp_view();	

One	of	the	uses	of	triggers	is	to	maintain	a	summary	table	of	other	tables.	The	result	
summary	can	be	used	in	place	of	the	original	table	for	a	particular	query	(usually	it	
requires	a	much	shorter	execution	time).	This	technique	is	commonly	used	in	data	
warehousing	where	measured	or	observed	data	tables	(called	fact	tables)	can	be	very	large.	
The	following	example	shows	an	example	of	a	PL/pgSQL	trigger	procedure	that	maintains	a	
summary	table	for	the	data	warehouse's	fact	tables.	

The	schemas	described	here	are	based	in	part	on	a	grocery	store	example	included	in	The	
Data	Warehouse	Toolkit	by	Ralph	Kimball.	

--	
-- Main tables - time dimension and sales fact.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

--	
CREATE TABLE time_dimension (
 time_key integer NOT NULL,	
 day_of_week integer NOT NULL,	
 day_of_month integer NOT NULL,	
 month integer NOT NULL,	
 quarter integer NOT NULL,	
 year integer NOT NULL	
);	
CREATE UNIQUE INDEX time_dimension_key ON time_dimension(time_key);	
	
CREATE TABLE sales_fact (
 time_key integer NOT NULL,	
 product_key integer NOT NULL,	
 store_key integer NOT NULL,	
 amount_sold numeric(12,2) NOT NULL,	
 units_sold integer NOT NULL,	
 amount_cost numeric(12,2) NOT NULL	
);	
CREATE INDEX sales_fact_time ON sales_fact(time_key);	
	
--	
-- Summary table - sales by time.	
--	
CREATE TABLE sales_summary_bytime (
 time_key integer NOT NULL,	
 amount_sold numeric(15,2) NOT NULL,	
 units_sold numeric(12) NOT NULL,	
 amount_cost numeric(15,2) NOT NULL	
);	
CREATE UNIQUE INDEX sales_summary_bytime_key ON sales_summary_bytime(time_ke
y);	
	
--	
-- Function and trigger to amend summarized column(s) on UPDATE, INSERT, DELE
TE.	
--	
CREATE OR REPLACE FUNCTION maint_sales_summary_bytime() RETURNS TRIGGER	
AS $maint_sales_summary_bytime$	
 DECLARE	
 delta_time_key integer;	
 delta_amount_sold numeric(15,2);	
 delta_units_sold numeric(12);	
 delta_amount_cost numeric(15,2);	
 BEGIN	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	
 -- Work out the increment/decrement amount(s).	
 IF (TG_OP = 'DELETE') THEN	
	
 delta_time_key = OLD.time_key;	
 delta_amount_sold = -1 * OLD.amount_sold;	
 delta_units_sold = -1 * OLD.units_sold;	
 delta_amount_cost = -1 * OLD.amount_cost;	
	
 ELSIF (TG_OP = 'UPDATE') THEN	
	
 -- forbid updates that change the time_key -	
 -- (probably not too onerous, as DELETE + INSERT is how most	
 -- changes will be made).	
 IF (OLD.time_key != NEW.time_key) THEN	
 RAISE EXCEPTION 'Update of time_key : % -> % not allowed',	
 OLD.time_key, NEW.time_
key;	
 END IF;	
	
 delta_time_key = OLD.time_key;	
 delta_amount_sold = NEW.amount_sold - OLD.amount_sold;	
 delta_units_sold = NEW.units_sold - OLD.units_sold;	
 delta_amount_cost = NEW.amount_cost - OLD.amount_cost;	
	
 ELSIF (TG_OP = 'INSERT') THEN	
	
 delta_time_key = NEW.time_key;	
 delta_amount_sold = NEW.amount_sold;	
 delta_units_sold = NEW.units_sold;	
 delta_amount_cost = NEW.amount_cost;	
	
 END IF;	
	
 -- Insert or update the summary row with the new values.	
	
 LOOP	
 UPDATE sales_summary_bytime	
 SET amount_sold = amount_sold + delta_amount_sold,	
 units_sold = units_sold + delta_units_sold,	
 amount_cost = amount_cost + delta_amount_cost	
 WHERE time_key = delta_time_key;	
	
 EXIT insert_update WHEN found;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	
 BEGIN	
 INSERT INTO sales_summary_bytime (
 time_key,	
 amount_sold,	
 units_sold,	
 amount_cost)	
 VALUES (
 delta_time_key,	
 delta_amount_sold,	
 delta_units_sold,	
 delta_amount_cost	
);	
	
 EXIT insert_update;	
	
 EXCEPTION	
 WHEN UNIQUE_VIOLATION THEN	
 -- do nothing	
 END;	
 END LOOP insert_update;	
	
 RETURN NULL;	
	
 END;	
$maint_sales_summary_bytime$ LANGUAGE plpgsql;	
	
CREATE TRIGGER maint_sales_summary_bytime	
AFTER INSERT OR UPDATE OR DELETE ON sales_fact	
 FOR EACH ROW EXECUTE PROCEDURE maint_sales_summary_bytime();	
	
INSERT INTO sales_fact VALUES(1,1,1,10,3,15);	
INSERT INTO sales_fact VALUES(1,2,1,20,5,35);	
INSERT INTO sales_fact VALUES(2,2,1,40,15,135);	
INSERT INTO sales_fact VALUES(2,3,1,10,1,13);	
SELECT * FROM sales_summary_bytime;	
DELETE FROM sales_fact WHERE product_key = 1;	
SELECT * FROM sales_summary_bytime;	
UPDATE sales_fact SET units_sold = units_sold * 2;	
SELECT * FROM sales_summary_bytime;	

Event	triggers	
PL/pgSQL	can	be	used	to	define	event	triggers.	In	AgensGraph,	procedures	to	be	called	as	
event	triggers	have	no	arguments	and	event_trigger	should	be	declared	as	return	type.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

When	a	PL/pgSQL	function	is	called	with	an	event	trigger,	several	special	variables	are	
automatically	created	in	the	top-level	block.	

• TG_EVENT	
Data	type	text;	a	string	representing	the	event	under	which	the	trigger	will	be	
executed.	

• TG_TAG	
Data	type	text;	a	variable	that	contains	a	command	tag	where	the	trigger	is	executed.	

The	trigger	in	the	example	below	generates	a	NOTICE	message	each	time	a	supported	
command	is	executed.	

CREATE OR REPLACE FUNCTION snitch() RETURNS event_trigger AS $$	
BEGIN	
 RAISE NOTICE 'snitch: % %', tg_event, tg_tag;	
END;	
$$ LANGUAGE plpgsql;	
	
CREATE EVENT TRIGGER snitch ON ddl_command_start EXECUTE PROCEDURE snitch();	

Tips for Developing in PL/pgSQL

A	good	way	of	development	in	PL/pgSQL	is	to	write	a	function	using	a	text	editor	of	your	
choice	and	load	and	test	it	using	psql	in	another	window.	If	you	work	like	this,	we	
recommend	you	to	write	a	function	using	CREATE OR REPLACE FUNCTION.	You	can	then	
update	the	function	definition	by	reloading	the	file.	An	example	is	shown	below:	

CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $$	
 	
$$ LANGUAGE plpgsql;	

You	can	load	or	reload	the	following	function	definition	file	while	running	psql	as	follows:	

\i filename.sql	

Another	good	way	to	develop	in	PL/pgSQL	is	to	use	a	GUI	database	access	tool	that	
facilitates	development	with	a	procedural	language.	These	tools	often	provide	convenient	
features	(e.g.	removing	single	quotes,	easier	play	back).	

Quotation	processing	
The	code	of	a	PL/pgSQL	function	is	specified	as	a	string	literal	in	CREATE FUNCTION.	If	you	
use	a	usual	way	to	enclose	a	string	in	single	quotes,	you	need	to	double	the	single	quotes	in	
the	body	of	the	function.	Likewise,	you	should	use	two	backslashes	as	well	(assuming	
escape	string	syntax	is	used).	Using	quotes	twice	can	make	your	code	difficult	to	
understand.	This	is	because	it	is	easy	for	the	user	to	know	that	many	adjacent	quotes	are	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

needed.	
Therefore,	you	are	recommended	to	write	function	bodies	using	"dollar	quoted"	string	
literals.	In	the	dollar	citation	method,	you	should	never	use	quotation	marks	twice,	but	
instead	choose	a	different	dollar	citation	delimiter	for	each	required	nesting	level.	For	
example,	you	can	create	a	CREATE FUNCTION	command	as	follows:	

CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $PROC$	
 	
$PROC$ LANGUAGE plpgsql;	

In	this	case,	you	may	use	quotes	around	a	simple	literal	string	in	SQL	commands	and	use	
$$	to	separate	the	SQL	command	to	assemble	into	strings.	If	you	need	to	quote	text	that	
contains	$$,	you	can	use	Q.	

The	following	chart	shows	what	to	do	when	writing	quotes	without	dollar	citation	marks.	
This	can	be	useful	when	converting	dollar	citation	marks	to	something	more	
understandable.	

1	quotation	mark	
To	start	and	end	a	function	body:	

CREATE FUNCTION foo() RETURNS integer AS '	
 	
' LANGUAGE plpgsql;	

Within	the	function	body	enclosed	in	single	quotes,	the	quotes	should	appear	in	pairs.	

2	quotation	marks	
It	is	used	to	express	a	string	literal	inside	a	function	body.	For	example:	

a_output := ''Blah'';	
SELECT * FROM users WHERE f_name=''foobar'';	

In	the	dollar	citation	scheme,	you	can	write:	

a_output := 'Blah';	
SELECT * FROM users WHERE f_name='foobar';	

The	PL/pgSQL	parser	figures	out	both	cases	exactly.	

4	quotation	marks	
This	is	used	when	a	string	constant	inside	the	function	body	requires	a	single	quote.	For	
example:	

a_output := a_output || '' AND name LIKE ''''foobar'''' AND xyz''	

The	value	that	has	actually	been	added	to	a_output:	AND name LIKE 'foobar'AND xyz.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

In	the	dollar	citation	scheme,	you	can	write:	

a_output := a_output || $$ AND name LIKE 'foobar' AND xyz$$	

6	quotation	marks	

Used	when	a	single	quote	of	a	string	inside	the	function	body	is	adjacent	to	the	end	of	the	
string	constant.	For	example:	

a_output := a_output || '' AND name LIKE ''''foobar''''''	

The	value	added	to	a_output:	AND name LIKE 'foobar'.	

In	the	dollar	citation	scheme,	you	can	write:	

a_output := a_output || $$ AND name LIKE 'foobar'$$	

10	quotation	marks	
Two	single	quotes	are	needed	in	a	string	constant	(representing	eight	quote	marks)	and	are	
adjacent	to	the	end	of	the	string	constant	(two	or	more).	You	will	only	need	it	if	you	are	
writing	a	function	that	creates	another	function.	

a_output := a_output || '' if v_'' ||	
 referrer_keys.kind || '' like ''''''''''	
 || referrer_keys.key_string || ''''''''''	
 then return '''''' || referrer_keys.referrer_type	
 || ''''''; end if;'';	

The	value	of	a_output	is	as	follows	

if v_... like ''...'' then return ''...''; end if;	

In	the	dollar	citation	scheme,	you	can	write:	

a_output := a_output || $$ if v_$$ || referrer_keys.kind || $$ like '$$	
 || referrer_keys.key_string || $$'	
 then return '$$ || referrer_keys.referrer_type	
 || $$'; end if;$$;	

PL/Python

PL/Python Functions

Functions	in	PL/Python	are	declared	using	standard	CREATE	FUNCTION	syntax.	

CREATE FUNCTION funcname (argument-list)	
 RETURNS return-type	
AS $$	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 # PL/Python function body	
$$ LANGUAGE plpythonu;	

The	body	of	this	function	is	a	simple	python	script.	When	the	function	is	called,	its	
arguments	are	passed	to	the	list	args;	named	arguments	are	passed	to	the	Python	script	as	
ordinary	variables	as	well.	Such	named	arguments	are	generally	more	readable.	The	result	
is	returned	in	the	Python	code	with	return	or	yield	(in	case	of	a	result-set	statement).	If	you	
do	not	provide	a	return	value,	Python	returns	the	default	(None).	PL/Python	converts	
Python's	None	to	SQL's	Null.	

For	example,	a	function	that	returns	the	greater	of	two	integers	can	be	defined	as:	

CREATE FUNCTION pymax (a integer, b integer)	
 RETURNS integer	
AS $$	
 if a > b:	
 return a	
 return b	
$$ LANGUAGE plpythonu;	

The	Python	code	that	is	given	as	the	body	of	the	function	definition	is	transformed	into	a	
Python	function.	For	example,	the	above	results	in:	

def __plpython_procedure_pymax_23456():	
 if a > b:	
 return a	
 return b	

Assuming	that	23456	is	the	OID	assigned	to	the	function.	

The	argument	is	set	to	a	global	variable.	Unless	a	variable	is	declared	globally	in	a	block,	the	
argument	variable	cannot	be	reassigned	within	the	function	as	an	expression	value	
containing	the	variable	name	itself	according	to	the	Python's	scoping	rules.	For	example,	
the	following	may	not	work:	

CREATE FUNCTION pystrip(x text)	
 RETURNS text	
AS $$	
 x = x.strip() # error	
 return x	
$$ LANGUAGE plpythonu;	

When	you	assign	it	to	x,	x	becomes	a	local	variable	for	the	entire	block.	Thus,	the	x	on	the	
right	side,	which	is	not	a	PL/Python	function	parameter,	only	refers	to	the	local	variable	x	
that	has	not	yet	been	allocated.	You	can	use	a	global	statement	to	perform	the	following:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

CREATE FUNCTION pystrip(x text)	
 RETURNS text	
AS $$	
 global x	
 x = x.strip() # ok now	
 return x	
$$ LANGUAGE plpythonu;	

However,	it	is	better	not	to	rely	on	the	detailed	implementation	of	PL/Python;	you	are	
recommended	to	use	function	parameters	as	read-only.	

Data Values

In	general,	the	purpose	of	PL/Python	is	to	provide	a	"natural"	mapping	between	
AgensGraph	and	Python.	Information	on	the	data	mapping	rules	is	described	below.	

Data Type Mapping

When	a	PL/Python	function	is	called,	the	argument	is	converted	from	the	AgensGraph	data	
type	to	the	corresponding	Python	type.	

• AgensGraph	boolean	is	converted	to	Python	boolean.	
	

• AgensGraph	smallint	and	int	are	converted	to	Python	int.	AgensGraph	bigint	and	
oid	are	converted	to	long	in	Python2	and	int	in	Python3.	
	

• AgensGraph	real	and	double	are	converted	to	Python	float.	
	

• AgensGraph	numeric	is	converted	to	Python	Decimal.	If	this	type	is	available,	bring	it	
from	the	cdecimal	package.	Otherwise,	the	standard	library	decimal.Decimal	is	used.	
cdecimal	is	considerably	faster	than	decimal.	In	Python3.3	or	later	versions,	there	is	
no	difference	between	the	two	as	cdecimal	is	integrated	into	the	standard	library	
under	the	name	decimal.	
	

• AgensGraph	bytea	is	converted	to	str	in	Python2	and	bytes	in	Python3.	In	Python2,	
you	need	to	treat	the	string	as	a	sequence	of	bytes	without	character	encoding.	

• All	other	data	types,	including	the	AgensGraph	string	format,	are	converted	to	Python	
str.	In	Python2,	this	string	is	in	the	AgensGraph	server	encoding.	In	Python3,	it	
becomes	the	same	Unicode	string	as	all	strings.	
	

• For	nonscalar	data	type,	see	below.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

When	returning	a	PL/Python	function,	the	return	value	is	converted	to	the	declared	
AgensGraph	return	data	type	of	the	function	as	follows:	

• When	the	AgensGraph	return	type	is	boolean,	the	return	value	is	evaluated	to	see	if	it	
is	true	according	to	the	Python	rules.	That	is,	while	0	and	an	empty	string	are	false,	'f'	
is	true.	
	

• When	the	AgensGraph	return	type	is	bytea,	the	return	value	is	converted	to	string	
(Python2)	or	bytes	(Python3)	using	each	Python	built-in	function,	and	the	result	is	
converted	to	bytea.	
	

• For	all	other	AgensGraph	return	types,	the	conversion	value	is	converted	to	a	string	
using	the	Python	built-in	str,	and	the	result	is	passed	to	the	input	function	of	
AgensGraph	data	type.	(If	the	Python	value	is	float,	use	the	repr	built-in	instead	of	
str	to	avoid	loss	of	precision.)	

In	Python2,	strings	should	be	in	the	AgensGraph	server	encoding	when	passed	to	
AgensGraph.	A	string	that	is	not	valid	in	the	current	server	encoding	will	cause	an	error;	
since	not	all	encoding	discrepancies	can	be	detected,	garbage	values	can	continue	to	occur	
if	this	is	not	done	correctly.	As	Unicode	strings	are	automatically	converted	to	the	correct	
encoding,	using	them	can	be	safer	and	more	convenient.	In	Python3,	all	strings	are	Unicode	
strings.	

*See	below	for	more	information	on	nonscalar	data	types.	

The	logical	discrepancy	between	the	declared	AgensGraph	return	type	and	actual	return	
object's	Python	data	type	is	not	displayed;	in	any	case	the	value	will	be	returned.	

Null, None

If	SQL	null	is	passed	to	a	function,	the	argument	value	in	Python	is	displayed	as	none.	For	
example,	the	function	definition	in	PL/Python	Functions	pymax	returns	an	incorrect	answer	
for	null	input.	You	can	add	STRICT	to	your	function	definition	to	make	the	work	more	
reasonable.	If	null	is	passed,	the	function	will	not	be	called	at	all	and	will	automatically	
return	null.	You	may	also	check	for	null	input	in	the	function	body.	

CREATE FUNCTION pymax (a integer, b integer)	
 RETURNS integer	
AS $$	
 if (a is None) or (b is None):	
 return None	
 if a > b:	
 return a	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 return b	
$$ LANGUAGE plpythonu;	

As	shown	above,	to	return	an	SQL	null	value	from	a	PL/Python	function,	return	the	value	
None.	This	can	be	done	whether	the	function	is	strict	or	not.	

Arrays, Lists

SQL	array	values	are	passed	to	PL/Python	as	a	Python	list.	To	return	a	SQL	array	value	
from	a	PL/Python	function,	return	a	Python	sequence	(e.g.	a	list	or	tuple).	

CREATE FUNCTION return_arr()	
 RETURNS int[]	
AS $$	
return (1, 2, 3, 4, 5)	
$$ LANGUAGE plpythonu;	
	
SELECT return_arr();	
 return_arr 	

 {1,2,3,4,5}	
(1 row)	

Strings	are	sequences	in	Python;	Python	programmers	who	are	not	familiar	with	this	can	
have	undesirable	consequences.	

CREATE FUNCTION return_str_arr()	
 RETURNS varchar[]	
AS $$	
return "hello"	
$$ LANGUAGE plpythonu;	
	
SELECT return_str_arr();	
 return_str_arr	

 {h,e,l,l,o}	
(1 row)	

Composite Types

Composite-type	arguments	are	passed	to	the	function	as	Python	mappings.	The	element	
names	of	the	mapping	are	the	attribute	names	of	the	composite	type.	If	an	attribute	in	the	
passed	row	has	a	null	value,	it	has	a	None	value	in	the	mapping.	Here	is	an	example:	

CREATE TABLE employee (
 name text,	
 salary integer,	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 age integer	
);	
	
CREATE FUNCTION overpaid (e employee)	
 RETURNS boolean	
AS $$	
 if e["salary"] > 200000:	
 return True	
 if (e["age"] < 30) and (e["salary"] > 100000):	
 return True	
 return False	
$$ LANGUAGE plpythonu;	

There	are	multiple	ways	to	return	row	or	composite	types	from	a	Python	function.	To	
execute	a	composite	type	result	example,	create	a	TYPE	as	shown	below:	

CREATE TYPE named_value AS (
 name text,	
 value integer	
);	

A	composite	result	can	be	returned	as	a:	

• Sequence	type	(a	tuple	or	list,	but	not	a	set	because	it	is	not	indexable)	Returned	
sequence	objects	must	have	the	same	number	of	items	as	the	composite	result	type	
has	fields.	The	item	with	index	0	is	assigned	to	the	first	field	of	the	composite	type,	1	to	
the	second	and	so	on.	For	example:	

	 CREATE FUNCTION make_pair (name text, value integer)	
 RETURNS named_value	
AS $$	
 return [name, value]	
 # or alternatively, as tuple: return (name, value)	
$$ LANGUAGE plpythonu;	

	 To	return	a	SQL	null	for	any	column,	insert	none	at	the	corresponding	position.	

• Mapping	(dictionary)	

	 The	value	for	each	result	type	column	is	retrieved	from	the	mapping	with	the	column	
name	as	key.	Example:	

	 CREATE FUNCTION make_pair (name text, value integer)	
 RETURNS named_value	
AS $$	
 return { "name": name, "value": value }	
$$ LANGUAGE plpythonu;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 Any	extra	dictionary	key/value	pairs	are	ignored.	Missing	keys	are	treated	as	errors.	
To	return	a	SQL	null	value	for	any	column,	insert	None	with	the	corresponding	column	
name	as	the	key.	

• Object	(any	object	providing	method	__getattr__)	

	 This	works	the	same	as	a	mapping.	Here	is	an	example:	

	 CREATE FUNCTION make_pair (name text, value integer)	
 RETURNS named_value	
AS $$	
 class named_value:	
 def __init__ (self, n, v):	
 self.name = n	
 self.value = v	
 return named_value(name, value)	
	
 # or simply	
 class nv: pass	
 nv.name = name	
 nv.value = value	
 return nv	
$$ LANGUAGE plpythonu;	

	 Functions	with	OUT	parameters	are	also	supported.	Here	is	an	example:	

	 CREATE FUNCTION multiout_simple(OUT i integer, OUT j integer) AS $$	
return (1, 2)	
$$ LANGUAGE plpythonu;	
	
SELECT * FROM multiout_simple();	

Set-returning Functions

A	PL/Python	function	can	also	return	sets	of	scalar	or	composite	types.	There	are	several	
ways	to	achieve	this	because	the	returned	object	is	internally	turned	into	an	iterator.	The	
following	examples	assume	we	have	composite	type:	

CREATE TYPE greeting AS (
how text,	
who text	
);	

A	set	result	can	be	returned	from	a:	

• Sequence	type	(tuple,	list,	set)	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

	 CREATE FUNCTION greet (how text)	
 RETURNS SETOF greeting	
AS $$	
 # return tuple containing lists as composite types	
 # all other combinations work also	
 return ([how, "World"], [how, "PostgreSQL"], [how, "PL/Python"])	
$$ LANGUAGE plpythonu;	

• Iterator	(any	object	providing	__iter__	and	next	methods)	

	 CREATE FUNCTION greet (how text)	
 RETURNS SETOF greeting	
AS $$	
 class producer:	
 def __init__ (self, how, who):	
 self.how = how	
 self.who = who	
 self.ndx = -1	
	
 def __iter__ (self):	
 return self	
	
 def next (self):	
 self.ndx += 1	
 if self.ndx == len(self.who):	
 raise StopIteration	
 return (self.how, self.who[self.ndx])	
	
 return producer(how, ["World", "PostgreSQL", "PL/Python"])	
$$ LANGUAGE plpythonu;	

• Generator	(yield)	

	 CREATE FUNCTION greet (how text)	
 RETURNS SETOF greeting	
AS $$	
 for who in ["World", "PostgreSQL", "PL/Python"]:	
 yield (how, who)	
$$ LANGUAGE plpythonu;	

The	set-returning	function	with	OUT	parameters	(using	RETURNS SETOF	record)	is	also	
supported.	Here	is	an	example:	

CREATE FUNCTION multiout_simple_setof(n integer, OUT integer, OUT integer) 	
 RETURNS SETOF record 	
AS $$	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 return [(1, 2)] * n	
$$ LANGUAGE plpythonu;	
	
SELECT * FROM multiout_simple_setof(3);	

Sharing Data

Global	dictionary	SD	can	be	used	to	store	data	between	function	calls.	This	variable	is	of	
individual	static	data.	You	should	be	careful	since	Global	dictionary	GD	is	public	data	that	
can	be	used	in	all	Python	functions	in	the	session.	

As	each	function	has	its	own	execution	environment	in	the	Python	interpreter,	global	data	
and	function	arguments	of	myfunc	cannot	be	used	in	myfunc2.	As	mentioned	above,	data	in	
the	GD	dictionary	is	an	exception.	

Anonymous Code Blocks

PL/Python	also	supports	anonymous	code	blocks	that	are	called	together	with	DO	
statements.	

DO $$	
 # PL/Python code	
$$ LANGUAGE plpythonu;	

Anonymous	code	blocks	do	not	take	arguments	and	discard	all	the	returned	values.	
Otherwise,	they	behave	like	a	function.	

Trigger Functions

When	a	function	is	used	as	a	trigger,	the	dictionary	TD	contains	the	trigger-related	value.	

TD["event"]	
Contains	an	event	as	a	string	(INSERT,	UPDATE,	DELETE,	or	TRUNCATE).	

TD["when"]	
Contains	one	of	BEFORE,	AFTER,	and	INSTEAD OF.	

TD["level"]	
Contains	ROW	or	STATEMENT.	

TD["new"],	TD["old"]	
Contains	each	trigger	row	according	to	one	or	both	trigger	events	of	the	fields,	in	the	case	
of	row-level	triggers.	

TD["name"]	
Contains	the	trigger	name.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

TD["table_name"]	
Contains	the	name	of	the	table	on	which	the	trigger	occurred.	

TD["table_schema"]	
Contains	the	schema	of	the	table	where	the	trigger	occurred.	

TD["relid"]	
Contains	the	OID	of	the	table	where	the	trigger	occurred.	

TD["args"]	
In	the	case	of	CREATE TRIGGER	(command)	with	arguments,	you	can	use	from	
TD["args"][0]	to	TD["args"][n-1].	

When	TD ["when"]	is	BEFORE	or	INSTEAD OF	and	TD ["level"]	is	ROW,	the	Python	function	
may	return	None	or	"OK"	to	indicate	that	the	row	has	not	changed.	"SKIP"	aborts	the	event.	
When	TD ["event"]	applies	INSERT	or	UPDATE,	it	can	return	"MODIFY"	to	modify	the	new	
row.	Otherwise,	the	return	value	is	ignored.	

Database Access

The	PL/Python	language	module	automatically	imports	a	Python	module	called	plpy.	The	
functions	and	constants	in	this	module	are	available	to	you	in	the	Python	code	as	plpy.foo.	

Database Access Functions

The	plpy	module	provides	several	functions	to	execute	database	commands:	

plpy.execute(query	[,	max-rows])	

If	you	call	plpy.execute	with	a	query	string	and	select	an	optional	row	limit	argument,	the	
corresponding	query	will	be	run	and	the	result	will	be	returned	in	a	result	object.	

The	result	object	emulates	a	list	or	dictionary	object.	The	result	object	can	be	accessed	by	
row	number	and	column	name.	For	example:	

rv = plpy.execute("SELECT * FROM my_table", 5)	

returns	up	to	5	rows	from	my_table.	If	my_table	has	a	column	my_column,	it	would	be	
accessed	as:	

foo = rv[i]["my_column"]	

The	number	of	rows	returned	can	be	obtained	using	the	built-in	len	function.	

The	result	object	has	these	additional	methods:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• nrows()	Returns	the	number	of	rows	processed	by	the	command.	Note	that	this	is	not	
necessarily	the	same	as	the	number	of	rows	returned.	For	example,	UPDATE	command	
will	set	this	value	but	won't	return	any	rows	(unless	RETURNING	is	used).	

• status()	Returns	the	SPI_execute()	value.	

• colnames(),	coltypes(),	coltypmods()	Returns	a	list	of	column	names,	list	of	column	
type	OIDs,	and	list	of	type-specific	type	modifiers	for	the	columns,	respectively.	These	
methods	raise	an	exception	when	called	on	a	result	object	from	a	command	that	did	
not	produce	a	result	set	(e.g.	UPDATE	without	RETURNING,	or	DROP TABLE).	But	it	is	OK	to	
use	these	methods	on	a	result	set	containing	zero	rows.	

• str()	The	standard	__str__	method	is	defined	so	that	it	is	possible,	for	example,	to	
debug	query	execution	results	using	plpy.debug(rv).	

The	result	object	can	be	modified.	

Calling	plpy.execute	will	cause	the	entire	result	set	to	be	read	into	memory.	Use	the	
function	only	when	the	result	set	will	be	relatively	small.	If	you	don't	want	to	risk	excessive	
memory	usage	when	fetching	large	results,	use	plpy.cursor	rather	than	plpy.execute.	

plpy.prepare(query	[,	argtypes])	plpy.execute(plan	[,	arguments	[,	max-rows]])	

plpy.prepare	prepares	the	execution	plan	for	a	query.	It	is	called	with	a	query	string	and	a	
list	of	parameter	types,	if	you	have	parameter	references	in	the	query.	Here	is	an	example:	

plan = plpy.prepare("SELECT last_name FROM my_users WHERE first_name = $1",
["text"])	

text	is	the	type	of	the	variable	you	will	be	passing	for	$1.	The	second	argument	is	optional	
if	you	don't	want	to	pass	any	parameters	to	the	query.	After	preparing	a	statement,	you	use	
a	variant	of	the	function	plpy.execute	to	run	it:	

rv = plpy.execute(plan, ["name"], 5)	

Pass	the	plan	as	the	first	argument	(instead	of	the	query	string),	and	a	list	of	values	to	
substitute	into	the	query	as	the	second	argument.	The	second	argument	is	optional	if	the	
query	cannot	expect	any	parameters.	The	third	argument	is	the	optional	row	limit	as	before.	

Query	parameters	and	result	row	fields	are	converted	between	PostgreSQL	and	Python	
data	types	as	described	in	Data	Values.	

When	you	prepare	a	plan	using	the	PL/Python	module	it	is	automatically	saved.	Refer	to	
this	link	for	more	information.	In	order	to	use	this	function	effectively	through	this	feature,	
you	need	to	use	one	of	the	persistent	storage	dictionaries	SD	or	GD	(see	Sharing	Data).	Here	
is	an	example:	

https://www.postgresql.org/docs/9.6/static/spi.html

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

CREATE FUNCTION usesavedplan() RETURNS trigger AS $$	
 if "plan" in SD:	
 plan = SD["plan"]	
 else:	
 plan = plpy.prepare("SELECT 1")	
 SD["plan"] = plan	
 # rest of function	
$$ LANGUAGE plpythonu;	

plpy.cursor(query)	plpy.cursor(plan	[,	arguments])	

The	plpy.cursor	function	accepts	the	same	arguments	as	plpy.execute	(except	for	the	
row	limit)	and	returns	a	cursor	object,	which	allows	you	to	process	large	result	sets	in	
smaller	chunks.	As	with	plpy.execute,	either	a	query	string	or	a	plan	object	along	with	a	
list	of	arguments	can	be	used.	

The	cursor	object	provides	a	fetch	method	that	accepts	an	integer	parameter	and	returns	a	
result	object.	Each	time	you	call	fetch,	the	returned	object	will	contain	the	next	batch	of	
rows,	which	is	no	larger	than	the	parameter	value.	Once	all	rows	are	used,	fetch	starts	
returning	an	empty	result	object.	Cursor	objects	also	provide	an	iterator	interface,	creating	
one	row	at	a	time	until	all	rows	are	exhausted.	Data	fetched	that	way	is	not	returned	as	
result	objects,	but	rather	as	dictionaries,	each	dictionary	corresponding	to	a	single	result	
row.	

An	example	of	two	ways	of	processing	data	from	a	large	table	is:	

CREATE FUNCTION count_odd_iterator() RETURNS integer AS $$	
odd = 0	
for row in plpy.cursor("select num from largetable"):	
 if row['num'] % 2:	
 odd += 1	
return odd	
$$ LANGUAGE plpythonu;	
	
CREATE FUNCTION count_odd_fetch(batch_size integer) RETURNS integer AS $$	
odd = 0	
cursor = plpy.cursor("select num from largetable")	
while True:	
 rows = cursor.fetch(batch_size)	
 if not rows:	
 break	
 for row in rows:	
 if row['num'] % 2:	
 odd += 1	
return odd	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

$$ LANGUAGE plpythonu;	
	
CREATE FUNCTION count_odd_prepared() RETURNS integer AS $$	
odd = 0	
plan = plpy.prepare("select num from largetable where num % $1 <> 0", ["integ
er"])	
rows = list(plpy.cursor(plan, [2]))	
	
return len(rows)	
$$ LANGUAGE plpythonu;	

Cursors	are	automatically	disposed	of.	However,	if	you	want	to	explicitly	release	all	
resources	held	by	a	cursor,	use	the	close	method.	Once	closed,	a	cursor	cannot	be	fetched	
from	anymore.	

Trapping Errors

Functions	accessing	the	database	might	encounter	errors,	which	will	cause	them	to	abort	
and	raise	an	exception.	Both	plpy.execute	and	plpy.prepare	can	raise	an	instance	of	a	
subclass	of	plpy.SPIError,	which	by	default	will	terminate	the	function.	This	error	can	be	
handled	just	like	any	other	Python	exception,	by	using	the	try/except	construct.	For	
example:	

CREATE FUNCTION try_adding_joe() RETURNS text AS $$	
 try:	
 plpy.execute("INSERT INTO users(username) VALUES ('joe')")	
 except plpy.SPIError:	
 return "something went wrong"	
 else:	
 return "Joe added"	
$$ LANGUAGE plpythonu;	

The	actual	class	of	the	exception	being	raised	corresponds	to	the	specific	condition	that	
caused	the	error.	Refer	to	this	link	for	a	list	of	possible	conditions.	The	module	
plpy.spiexceptions	defines	an	exception	class	for	each	condition,	deriving	their	names	
from	the	condition	name.	For	instance,	division_by_zero	becomes	DivisionByZero,	
unique_violation	becomes	UniqueViolation,	fdw_error	becomes	FdwError,	and	so	on.	
Each	of	these	exception	classes	inherits	from	SPIError.	This	separation	makes	it	easier	to	
handle	specific	errors.	For	example:	

CREATE FUNCTION insert_fraction(numerator int, denominator int) RETURNS text
AS $$	
from plpy import spiexceptions	
try:	
 plan = plpy.prepare("INSERT INTO fractions (frac) VALUES ($1 / $2)", ["in

https://www.postgresql.org/docs/9.6/static/errcodes-appendix.html#ERRCODES-TABLE

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

t", "int"])	
 plpy.execute(plan, [numerator, denominator])	
except spiexceptions.DivisionByZero:	
 return "denominator cannot equal zero"	
except spiexceptions.UniqueViolation:	
 return "already have that fraction"	
except plpy.SPIError, e:	
 return "other error, SQLSTATE %s" % e.sqlstate	
else:	
 return "fraction inserted"	
$$ LANGUAGE plpythonu;	

As	all	exceptions	from	the	plpy.spiexceptions	module	inherit	from	SPIError,	the	except	
clause	handling	it	will	catch	any	database	access	error.	

As	an	alternative	way	of	handling	different	error	conditions,	you	can	catch	the	SPIError	
exception	and	determine	the	specific	error	condition	inside	the	except	block	by	looking	at	
the	sqlstate	attribute	of	the	exception	object.	This	attribute	is	a	string	value	containing	
the	"SQLSTATE"	error	code.	This	approach	provides	approximately	the	same	functionality.	

Explicit Subtransactions

Recovering	from	errors	caused	by	database	access	as	described	in	Trapping	Errors	can	lead	
to	an	undesirable	situation	where	some	operations	succeed	before	one	of	them	fails;	after	
recovering	from	that	error,	the	data	is	left	in	an	inconsistent	state.	PL/Python	offers	a	
solution	to	this	problem	in	the	form	of	explicit	subtransactions.	

Subtransaction Context Managers

Consider	a	function	that	implements	a	transfer	between	two	accounts:	

CREATE FUNCTION transfer_funds() RETURNS void AS $$	
try:	
 plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_n
ame = 'joe'")	
 plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_n
ame = 'mary'")	
except plpy.SPIError, e:	
 result = "error transferring funds: %s" % e.args	
else:	
 result = "funds transferred correctly"	
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])	
plpy.execute(plan, [result])	
$$ LANGUAGE plpythonu;	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

If	the	second	UPDATE	statement	results	in	an	exception	being	raised,	this	function	will	
report	the	error,	but	the	result	of	the	first	UPDATE	will	nevertheless	be	committed.	In	other	
words,	the	funds	will	be	withdrawn	from	Joe's	account,	but	will	not	be	transferred	to	
Mary's	account.	

To	avoid	such	issues,	you	can	wrap	your	plpy.execute	calls	in	an	explicit	subtransaction.	
The	plpy	module	provides	a	helper	object	to	manage	explicit	subtransactions	that	gets	
created	with	the	plpy.subtransaction()	function.	Objects	created	by	this	function	
implement	the	context	manager	interface.	By	using	explicit	subtransactions,	you	may	
rewrite	the	function	as:	

CREATE FUNCTION transfer_funds2() RETURNS void AS $$	
try:	
 with plpy.subtransaction():	
 plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE accou
nt_name = 'joe'")	
 plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE accou
nt_name = 'mary'")	
except plpy.SPIError, e:	
 result = "error transferring funds: %s" % e.args	
else:	
 result = "funds transferred correctly"	
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])	
plpy.execute(plan, [result])	
$$ LANGUAGE plpythonu;	

The	use	of	try/catch	is	still	required.	Otherwise	the	exception	would	be	transferred	to	the	
top	of	the	Python	stack	and	would	cause	the	whole	function	to	abort	due	to	an	AgensGraph	
error;	as	a	result,	the	operations	table	would	not	have	any	row	inserted	into	it.	The	
subtransaction	context	manager	does	not	trap	errors;	it	only	assures	that	all	database	
operations	executed	inside	its	scope	will	be	atomically	committed	or	rolled	back.	A	rollback	
of	the	subtransaction	block	occurs	on	any	kind	of	exception	exit,	not	only	ones	caused	by	
errors	originating	from	database	access.	A	regular	Python	exception	raised	inside	an	
explicit	subtransaction	block	would	also	cause	the	subtransaction	to	be	rolled	back.	

Older Python Versions

Context	managers	syntax	using	the	WITH	keyword	is	available	by	default	in	Python	2.6.	If	
using	PL/Python	with	an	older	Python	version,	it	is	still	possible	to	use	explicit	
subtransactions,	although	not	as	transparently.	You	can	call	the	subtransaction	manager's	
__enter__	and	__exit__	functions	using	the	enter	and	exit	convenience	aliases.	The	
example	function	that	transfers	funds	could	be	written	as:	

CREATE FUNCTION transfer_funds_old() RETURNS void AS $$	
try:	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

 subxact = plpy.subtransaction()	
 subxact.enter()	
 try:	
 plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE accou
nt_name = 'joe'")	
 plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE accou
nt_name = 'mary'")	
 except:	
 import sys	
 subxact.exit(*sys.exc_info())	
 raise	
 else:	
 subxact.exit(None, None, None)	
except plpy.SPIError, e:	
 result = "error transferring funds: %s" % e.args	
else:	
 result = "funds transferred correctly"	
	
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])	
plpy.execute(plan, [result])	
$$ LANGUAGE plpythonu;	

Utility Functions

The	plpy	module	also	provides	functions:	

plpy.debug(msg, **kwargs)	
plpy.log(msg, **kwargs)	
plpy.info(msg, **kwargs)	
plpy.notice(msg, **kwargs)	
plpy.warning(msg, **kwargs)	
plpy.error(msg, **kwargs)	
plpy.fatal(msg, **kwargs)	

plpy.error	and	plpy.fatal	actually	raise	a	Python	exception	that	is	not	actually	called,	
causing	the	current	transaction	or	subtransaction	to	be	aborted.	raise	plpy.Error(msg)	
and	raise	plpy.Fatal(msg)	are	equivalent	to	calling	plpy.error(msg)	and	
plpy.fatal(msg),	respectively,	but	you	cannot	pass	keyword	arguments	in	raise	type.	
Other	functions	only	generate	messages	of	different	priority	levels.	You	may	determine	
whether	messages	of	a	particular	priority	should	be	reported	to	the	client,	written	to	the	
server	log,	or	both	are	controlled	by	the	log_min_messages	and	client_min_messages	
configuration	variables.	See	this	link	for	more	information.	

https://www.postgresql.org/docs/9.6/static/runtime-config.html

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

The	msg	argument	is	provided	as	a	positional	argument.	Two	or	more	positional	arguments	
may	be	provided	for	backward	compatibility.	In	this	case,	the	tuple	string	expression	of	the	
positional	argument	is	the	message	reported	to	the	client.	

The	following	keyword-specific	arguments	are	allowed.	

detail	
hint	
sqlstate	
schema_name	
table_name	
column_name	
datatype_name	

The	string	expression	of	the	object	passed	as	a	keyword-specific	argument	is	used	to	
enforce	the	messages	reported	to	the	client.	Here	is	an	example:	

CREATE FUNCTION raise_custom_exception() RETURNS void AS $$	
plpy.error("custom exception message",	
 detail="some info about exception",	
 hint="hint for users")	
$$ LANGUAGE plpythonu;	
	
=# SELECT raise_custom_exception();	
ERROR: plpy.Error: custom exception message	
DETAIL: some info about exception	
HINT: hint for users	
CONTEXT: Traceback (most recent call last):	
 PL/Python function "raise_custom_exception", line 4, in <module>	
 hint="hint for users")	
PL/Python function "raise_custom_exception"	

Another	set	of	utility	functions	are	plpy.quote_literal(string),	
plpy.quote_nullable(string),	
and	plpy.quote_ident(string).	They	are	equivalent	to	the	built-in	quoting	functions.	
They	are	useful	when	constructing	ad-hoc	queries.	Dynamic	PL/Python	would	be:	

plpy.execute("UPDATE tbl SET %s = %s WHERE key = %s" % (
 plpy.quote_ident(colname),	
 plpy.quote_nullable(newvalue),	
 plpy.quote_literal(keyvalue)))	

Environment Variables

Some	of	the	environment	variables	that	are	accepted	by	the	Python	interpreter	may	affect	
PL/Python	behavior.	They	would	need	to	be	set	in	the	environment	of	the	main	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

AgensGraph	server	process,	for	example	in	a	start	script.	The	available	environment	
variables	depend	on	the	version	of	Python;	see	the	Python	manuals	for	more	information.	

• PYTHONHOME	
	

• PYTHONPATH	
	

• PYTHONY2K	
	

• PYTHONOPTIMIZE	
• PYTHONDEBUG	
• PYTHONVERBOSE	
• PYTHONCASEOK	
• PYTHONDONTWRITEBYTECODE	
• PYTHONIOENCODING	

	
• PYTHONUSERBASE	
• PYTHONHASHSEED	

(It	appears	to	be	a	Python	implementation	detail	beyond	the	control	of	PL/Python	that	
some	of	the	environment	variables	listed	on	the	python	man	page	are	only	effective	in	a	
command-line	interpreter	and	not	an	embedded	Python	interpreter.)	

	

Appendix

AgensGraph Error Codes
Every	message	generated	by	the	AgensGraph	server	is	assigned	with	a	five-character	error	
code	that	complies	with	the	SQL	standard	rules	for	"SQLSTATE"	codes.	

In	accordance	with	the	standard,	the	first	two	characters	of	the	error	code	indicate	the	
error	class,	and	the	last	three	indicate	a	specific	condition	within	the	class.	For	this	reason,	
we	may	expect	that	an	application	that	does	not	recognize	a	specific	error	code	is	likely	to	
fail	to	recognize	the	error	and	still	work	in	the	error	class.	

The	following	table	lists	all	the	error	codes	defined	in	AgensGraph.	(Some	of	them	are	not	
actually	used	at	the	moment,	but	their	definitions	are	still	included	in	the	SQL	standard.)	
Error	classes	are	also	displayed.	Each	error	class	has	a	"standard"	error	code	with	the	last	
three	characters	000.	This	code	is	used	only	for	error	conditions	that	are	in	the	class	but	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

without	any	specific	code	assigned.	The	symbols	in	the	"Condition	Name"	column	are	the	
condition	names	used	by	PL/pgSQL.	Condition	names	can	be	written	in	uppercase	or	
lowercase.	(Unlike	errors,	PL/pgSQL	does	not	recognize	warnings	for	condition	names	of	
class	00,01,02.)	

For	some	types	of	errors,	the	server	reports	the	names	of	database	objects	(table,	table	
column,	data	type,	or	constraint)	associated	with	the	errors.	For	example,	unique_isolation	
is	the	name	of	a	unique	constraint	that	caused	the	error.	As	these	names	are	provided	in	a	
separate	field	in	the	error	report	message,	the	application	does	not	have	to	extract	the	
names	to	a	human-readable	message	text.	

Error	Code	 Condition	Name	
Class	00	-	Successful	Completion	 	
00000	 successful_completion	
Class	01	-	Warning		 	
01000	 warning	
0100C	 dynamic_result_sets_returned	
01008	 implicit_zero_bit_padding	
01003	 null_value_eliminated_in_set_function	
01007	 privilege_not_granted	
01006	 privilege_not_revoked	
01004	 string_data_right_truncation	
01P01	 deprecated_feature	
Class	02	-	No	Data	 	
02000	 no_data	
02001	 no_additional_dynamic_result_sets_returned	
Class	03	-	SQL	Statement	Not	Yet	
Complete	

	

03000	 sql_statement_not_yet_complete	
Class	08	-	Connection	Exception	 	
08000	 connection_exception	
08003	 connection_does_not_exist	
08006	 connection_failure	
08001	 sqlclient_unable_to_establish_sqlconnection	
08004	 sqlserver_rejected_establishment_of_sqlconnection	
08007	 transaction_resolution_unknown	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

08P01	 protocol_violation	
Class	09	-	Triggered	Action	
Exception	

	

09000	 triggered_action_exception	
Class	0A	-	Feature	Not	Supported	 	
0A000	 feature_not_supported	
Class	0B	-	Invalid	Transaction	
Initiation	

	

0B000	 invalid_transaction_initiation	
Class	0F	-	Locator	Exception	 	
0F000	 locator_exception	
0F001	 invalid_locator_specification	
Class	0L	-	Invalid	Grantor	 	
0L000	 invalid_grantor	
0LP01	 invalid_grant_operation	
Class	0P	-	Invalid	Role	
Specification	

	

0P000	 invalid_role_specification	
Class	0Z	-	Diagnostics	Exception	 	
0Z000	 diagnostics_exception	
0Z002	 stacked_diagnostics_accessed_without_active_handler	
Class	20	-	Case	Not	Found	 	
20000	 case_not_found	
Class	21	-	Cardinality	Violation	 	
21000	 cardinality_violation	
Class	22	-	Data	Exception	 	
22000	 data_exception	
2202E	 array_subscript_error	
22021	 character_not_in_repertoire	
22008	 datetime_field_overflow	
22012	 division_by_zero	
22005	 error_in_assignment	
2200B	 escape_character_conflict	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

22022	 indicator_overflow	
22015	 interval_field_overflow	
2201E	 invalid_argument_for_logarithm	
22014	 invalid_argument_for_ntile_function	
22016	 invalid_argument_for_nth_value_function	
2201F	 invalid_argument_for_power_function	
2201G	 invalid_argument_for_width_bucket_function	
22018	 invalid_character_value_for_cast	
22007	 invalid_datetime_format	
22019	 invalid_escape_character	
2200D	 invalid_escape_octet	
22025	 invalid_escape_sequence	
22P06	 nonstandard_use_of_escape_character	
22010	 invalid_indicator_parameter_value	
22023	 invalid_parameter_value	
2201B	 invalid_regular_expression	
2201W	 invalid_row_count_in_limit_clause	
2201X	 invalid_row_count_in_result_offset_clause	
2202H	 invalid_tablesample_argument	
2202G	 invalid_tablesample_repeat	
22009	 invalid_time_zone_displacement_value	
2200C	 invalid_use_of_escape_character	
2200G	 most_specific_type_mismatch	
22004	 null_value_not_allowed	
22002	 null_value_no_indicator_parameter	
22003	 numeric_value_out_of_range	
22026	 string_data_length_mismatch	
22001	 string_data_right_truncation	
22011	 substring_error	
22027	 trim_error	
22024	 unterminated_c_string	
2200F	 zero_length_character_string	
22P01	 floating_point_exception	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

22P02	 invalid_text_representation	
22P03	 invalid_binary_representation	
22P04	 bad_copy_file_format	
22P05	 untranslatable_character	
2200L	 not_an_xml_document	
2200M	 invalid_xml_document	
2200N	 invalid_xml_content	
2200S	 invalid_xml_comment	
2200T	 invalid_xml_processing_instruction	
Class	23	-	Integrity	Constraint	
Violation	

	

23000	 integrity_constraint_violation	
23001	 restrict_violation	
23502	 not_null_violation	
23503	 foreign_key_violation	
23505	 unique_violation	
23514	 check_violation	
23P01	 exclusion_violation	
Class	24	-	Invalid	Cursor	State	 	
24000	 invalid_cursor_state	
Class	25	-	Invalid	Transaction	
State	

	

25000	 invalid_transaction_state	
25001	 active_sql_transaction	
25002	 branch_transaction_already_active	
25008	 held_cursor_requires_same_isolation_level	
25003	 inappropriate_access_mode_for_branch_transaction	
25004	 inappropriate_isolation_level_for_branch_transaction	
25005	 no_active_sql_transaction_for_branch_transaction	
25006	 read_only_sql_transaction	
25007	 schema_and_data_statement_mixing_not_supported	
25P01	 no_active_sql_transaction	
25P02	 in_failed_sql_transaction	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

25P03	 idle_in_transaction_session_timeout	
Class	26	-	Invalid	SQL	Statement	
Name	

	

26000	 invalid_sql_statement_name	
Class	27	-	Triggered	Data	Change	
Violation		

	

27000	 triggered_data_change_violation	
Class	28	-	Invalid	Authorization	
Specification	

	

28000	 invalid_authorization_specification	
28P01	 invalid_password	
Class	2B	-	Dependent	Privilege	
Descriptors	Still	Exist	

	

2B000	 dependent_privilege_descriptors_still_exist	
2BP01	 dependent_objects_still_exist	
Class	2D	-	Invalid	Transaction	
Termination		

	

2D000	 invalid_transaction_termination	
Class	2F	-	SQL	Routine	Exception	 	
2F000	 sql_routine_exception	
2F005	 function_executed_no_return_statement	
2F002	 modifying_sql_data_not_permitted	
2F003	 prohibited_sql_statement_attempted	
2F004	 reading_sql_data_not_permitted	
Class	34	-	Invalid	Cursor	Name	 	
34000	 invalid_cursor_name	
Class	38	-	External	Routine	
Exception	

	

38000	 external_routine_exception	
38001	 containing_sql_not_permitted	
38002	 modifying_sql_data_not_permitted	
38003	 prohibited_sql_statement_attempted	
38004	 reading_sql_data_not_permitted	
Class	39	-	External	Routine	 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Invocation	Exception	
39000	 external_routine_invocation_exception	
39001	 invalid_sqlstate_returned	
39004	 null_value_not_allowed	
39P01	 trigger_protocol_violated	
39P02	 srf_protocol_violated	
39P03	 event_trigger_protocol_violated	
Class	3B	-	Savepoint	Exception	 	
3B000	 savepoint_exception	
3B001	 invalid_savepoint_specification	
Class	3D	-	Invalid	Catalog	Name	 	
3D000	 invalid_catalog_name	
Class	3F	-	Invalid	Schema	Name	 	
3F000	 invalid_schema_name	
Class	40	-	Transaction	Rollback	 	
40000	 transaction_rollback	
40002	 transaction_integrity_constraint_violation	
40001	 serialization_failure	
40003	 statement_completion_unknown	
40P01	 deadlock_detected	
Class	42	-	Syntax	Error	or	Access	
Rule	Violation	

	

42000	 syntax_error_or_access_rule_violation	
42601	 syntax_error	
42501	 insufficient_privilege	
42846	 cannot_coerce	
42803	 grouping_error	
42P20	 windowing_error	
42P19	 invalid_recursion	
42830	 invalid_foreign_key	
42602	 invalid_name	
42622	 name_too_long	
42939	 reserved_name	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

42804	 datatype_mismatch	
42P18	 indeterminate_datatype	
42P21	 collation_mismatch	
42P22	 indeterminate_collation	
42809	 wrong_object_type	
42703	 undefined_column	
42883	 undefined_function	
42P01	 undefined_table	
42P02	 undefined_parameter	
42704	 undefined_object	
42701	 duplicate_column	
42P03	 duplicate_cursor	
42P04	 duplicate_database	
42723	 duplicate_function	
42P05	 duplicate_prepared_statement	
42P06	 duplicate_schema	
42P07	 duplicate_table	
42712	 duplicate_alias	
42710	 duplicate_object	
42702	 ambiguous_column	
42725	 ambiguous_function	
42P08	 ambiguous_parameter	
42P09	 ambiguous_alias	
42P10	 invalid_column_reference	
42611	 invalid_column_definition	
42P11	 invalid_cursor_definition	
42P12	 invalid_database_definition	
42P13	 invalid_function_definition	
42P14	 invalid_prepared_statement_definition	
42P15	 invalid_schema_definition	
42P16	 invalid_table_definition	
42P17	 invalid_object_definition	
Class	44	-	WITH	CHECK	OPTION	 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

Violation	
44000	 with_check_option_violation	
Class	53	-	Insufficient	Resources	 	
53000	 insufficient_resources	
53100	 disk_full	
53200	 out_of_memory	
53300	 too_many_connections	
53400	 configuration_limit_exceeded	
Class	54	-	Program	Limit	
Exceeded	

	

54000	 program_limit_exceeded	
54001	 statement_too_complex	
54011	 too_many_columns	
54023	 too_many_arguments	
Class	55	-	Object	Not	In	
Prerequisite	State	

	

55000	 object_not_in_prerequisite_state	
55006	 object_in_use	
55P02	 cant_change_runtime_param	
55P03	 lock_not_available	
Class	57	-	Operator	Intervention	 	
57000	 operator_intervention	
57014	 query_canceled	
57P01	 admin_shutdown	
57P02	 crash_shutdown	
57P03	 cannot_connect_now	
57P04	 database_dropped	
Class	58	-	System	Error	 	
58000	 system_error	
58030	 io_error	
58P01	 undefined_file	
58P02	 duplicate_file	
Class	72	-	Snapshot	Failure	 	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

72000	 snapshot_too_old	
Class	F0	-	Configuration	File	
Error	

	

F0000	 config_file_error	
F0001	 lock_file_exists	
Class	HV	-	Foreign	Data	Wrapper	
Error	

	

HV000	 fdw_error	
HV005	 fdw_column_name_not_found	
HV002	 fdw_dynamic_parameter_value_needed	
HV010	 fdw_function_sequence_error	
HV021	 fdw_inconsistent_descriptor_information	
HV024	 fdw_invalid_attribute_value	
HV007	 fdw_invalid_column_name	
HV008	 fdw_invalid_column_number	
HV004	 fdw_invalid_data_type	
HV006	 fdw_invalid_data_type_descriptors	
HV091	 fdw_invalid_descriptor_field_identifier	
HV00B	 fdw_invalid_handle	
HV00C	 fdw_invalid_option_index	
HV00D	 fdw_invalid_option_name	
HV090	 fdw_invalid_string_length_or_buffer_length	
HV00A	 fdw_invalid_string_format	
HV009	 fdw_invalid_use_of_null_pointer	
HV014	 fdw_too_many_handles	
HV001	 fdw_out_of_memory	
HV00P	 fdw_no_schemas	
HV00J	 fdw_option_name_not_found	
HV00K	 fdw_reply_handle	
HV00Q	 fdw_schema_not_found	
HV00R	 fdw_table_not_found	
HV00L	 fdw_unable_to_create_execution	
HV00M	 fdw_unable_to_create_reply	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

HV00N	 fdw_unable_to_establish_connection	
Class	P0	-	PL/pgSQL	Error	 	
P0000	 plpgsql_error	
P0001	 raise_exception	
P0002	 no_data_found	
P0003	 too_many_rows	
P0004	 assert_failure	
Class	XX	-	Internal	Error	 	
XX000	 internal_error	
XX001	 data_corrupted	
XX002	 index_corrupted	

Terminology

Database Cluster

• Server	(or	Node)	
Refers	to	hardware	(actual	or	virtual)	with	AgensGraph	installed.	

• Cluster	(or	'Database	Cluster')	
Refers	to	storage	space	(directory,	subdirectory,	file)	in	the	file	system.	Database	
cluster	also	has	global	object	definitions,	such	as	"Users	and	Privileges."	These	things	
affect	the	entire	database.	There	are	at	least	three	databases	('template0',	'template1',	
'postgres')	in	database	cluster.	Roles	of	each	database:	
template0':	Template	database	that	can	be	used	with	CREATE	DATABASE	command	
(template0	should	never	be	modified)	
template1':	Template	database	that	can	be	used	by	CREATE	DATABASE	command	
(template1	can	be	modified	by	DBA)	
postgres':	an	empty	database	primarily	for	maintenance	purposes	

• Instance	(or	'Database	Server	Instance'	or	'Database	Server'	or	'Backend')	
An	instance	is	a	group	of	processes	in	a	UNIX	server.	In	a	Windows	server,	it	is	a	
shared	memory	that	controls	and	manages	services	and	a	cluster.	From	an	IP	
perspective,	one	may	assume	that	an	instance	occupies	a	combination	of	IP/port	(e.g.	
http://localhost:5432).	This	means	you	can	run	different	instances	on	different	ports	
on	the	same	server.	It	is	also	possible	to	run	many	instances	on	a	single	system	per	
cluster	if	the	server	has	multiple	clusters.	

• Database	
A	database	is	a	storage	area	in	the	file	system	where	object	collections	are	stored	in	

http://localhost:5432/

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

files.	An	object	consists	of	data,	metadata	(table	definitions,	data	types,	constraints,	
views,	etc.)	and	other	data	such	as	indexes,	all	of	which	are	stored	in	the	default	
database	'postgres'	or	in	a	newly	created	database.	The	storage	area	for	one	database	
consists	of	a	single	subdirectory	tree	in	the	storage	area	of	the	database	cluster.	This	
means	a	database	cluster	may	contain	multiple	databases.	

• Schema	
A	namespace	within	a	database.	A	schema	consists	of	named	objects	(tables,	data	types,	
functions,	and	operators)	that	can	replicate	object	names	in	other	schemas	in	the	
database.	All	databases	contain	the	default	schema	'public'	and	is	able	to	contain	more	
schemas.	All	objects	in	a	schema	should	be	in	the	same	database,	and	objects	in	other	
schemas	in	the	same	database	may	have	the	same	name.	Each	database	has	
'pg_catalog,'	a	special	schema;	'pg_catalog'	contains	all	system	tables,	built-in	data	
types,	functions	and	operators.	

• Search	Path	(or	'Schema	Search	Path')	
A	list	of	schema	names.	If	the	application	uses	an	unqualified	object	name	(for	example,	
'employee_table'	in	table	name),	the	search	path	is	used	to	find	this	object	in	the	
specified	schema	order.	The	'pg_catalog'	schema	is	not	specified	in	the	search	path,	but	
is	always	the	first	part	of	the	search	path.	This	action	allows	AgensGraph	to	find	the	
system	object.	

• initdb	(OS	command)	
initdb	creates	a	new	cluster	(including	'template0',	'template1',	and	'postgres').	

Consistent Writes

• Checkpoint	
A	checkpoint	is	a	time	when	a	database	file	is	guaranteed	to	be	in	a	consistent	state.	At	
checkpoint	time,	all	changes	are	written	to	the	WAL	file,	all	dirty	data	pages	in	the	
shared	buffer	are	flushed	to	disk,	and	finally	the	checkpoint	record	is	written	to	the	
WAL	file.	The	instance's	checkpoint	process	is	triggered	according	to	a	regular	
schedule.	You	can	also	force	it	through	CHECKPOINT	command	in	the	client	program.	
In	the	case	of	a	database	system,	it	takes	a	lot	of	time	to	execute	the	checkpoint	
command	as	it	is	physically	written	to	disk.	

• WAL	File	
The	WAL	file	consists	of	changes	that	are	applied	to	data	through	commands	such	as	
INSERT,	UPDATE,	DELETE,	or	CREATE	TABLE.	This	is	redundant	information	as	it	is	
also	written	to	the	data	file	(for	better	performance).	Depending	on	the	configuration	
of	the	instance,	more	information	may	be	recorded	in	the	WAL	file.	The	WAL	file	is	in	
the	pg_wal	directory	(pg_xlog	for	version	10	or	earlier)	in	binary	format	with	a	fixed	
size	of	16MB.	A	single	unit	of	information	within	the	WAL	file	is	called	a	log	record.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

• Logfile	
An	instance	writes	and	reports	warning	and	error	messages	for	special	situations	to	a	
readable	text	file.	The	log	file	recorded	here	can	be	stored	at	any	position	in	the	server	
except	for	clusters.	

• Log	Record	
A	log	record	is	a	single	unit	of	information	within	the	WAL	file.	

FAQ

What debugging features do you have?

Compile time

First,	if	you	are	developing	using	a	new	C	code,	you	should	always	work	in	a	build	
environment	consisting	of	the	--enable-cassert	and	--enable-debug options.	If	you	
enable	a	debug	symbol,	you	can	trace	the	malfunctioning	code	using	the	debugger	(e.g.	gdb).	
When	compiling	with	gcc,	an	additional	called	-ggdb -Og -g3 -fno-omit-frame-pointer	
is	useful	because	it	inserts	a	lot	of	debugging	information.	You	can	pass	it	to	configure	as	
follows:	

./configure --enable-cassert --enable-debug CFLAGS="-ggdb -Og -g3 -fno-omit-f
rame-pointer"	

If	you	use	-O0,	instead	of	-Og,	most	compiler	optimizations,	including	inlining,	will	be	
disabled.	However,	-Og	performs	much	like	a	normal	optimization	flag	such	as	-O2	or	-Os,	
providing	more	debug	information;	it	has	far	fewer	<value optimized out>	variables,	
generates	less	confusion	or	difficulty	in	changing	the	execution	order	with	a	quite	useful	
performance.	-ggdb -g3	tells	gcc	to	include	the	maximum	amount	of	debug	information	in	
the	generated	binaries,	including	things	like	macro	definitions.	-fno-omit-frame-pointer	
is	useful	when	using	trace	and	profiling	tools	(e.g.	perf)	as	with	the	frame	pointer	that	
allows	these	tools	to	capture	the	call	stack	as	well	as	the	stack's	top	functions.	

Run time

The	postgres	server	has	a	-d	option	to	record	detailed	information	(elog	or	ereport	
DEBUGn	output).	The	-d	option	takes	a	number	that	specifies	the	debug	level.	Note	that	
high	debug	level	values	generate	large	log	files.	This	option	is	not	available	when	starting	
the	server	via	ag_ctl,	but	you	can	use	-o log_min_messages = debug4	or	something	
similar.	

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

gdb

If	postmaster	is	running,	start	agens	in	a	window	and	find	the	PID	of	the	postgres	process	
agens	using	
SELECT pg_backend_pid().	Use	the	debugger	to	attach	postgres	PID	-gdb -p 1234	or	
attach 1234	within	the	running	gdb.	The	gdblive	script	can	be	useful	as	well.	You	can	set	
breakpoints	in	the	debugger	and	then	run	queries	in	the	agens	session.	

Set	breakpoints	in	errfinish	to	find	a	location	to	generate	errors	or	log	messages.	As	this	
will	trap	all	of	the	elog	and	ereport	calls	on	the	available	log	levels,	many	triggers	may	be	
fired.	If	you	are	only	interested	in	ERROR/FATAL/PANIC,	use	gdb	conditional	breakpoints	
on	errordata[errordata_stack_depth].elevel >= 20,	or	set	source	line	breakpoints	on	
PANIC,	FATAL,	and	ERROR	in	errfinish.	Not	all	errors	pass	errfinish.	In	particular,	
authorization	checks	occur	separately.	If	the	breakpoints	are	not	triggered,	run	git grep	
on	the	error	text	and	see	where	it	was	thrown.	

If	you	are	debugging	things	that	occurred	when	you	start	a	session,	you	may	start	agens	
after	setting	PGOPTIONS="-W n".	You	can	then	delay	the	start	for	n	seconds,	connect	to	the	
process	using	the	debugger,	set	the	appropriate	breakpoints,	and	continue	the	startup	
sequence.	

You	may	tell	the	target	process	alternately	for	debugging	by	looking	at	pg_stat_activity,	
log,	
pg_locks,	pg_stat_replication,	and	so	on.	

I broke initdb. How do I debug it?

Sometimes	a	patch	can	cause	an	initdb	failure.	These	are	rare	in	initdb	itself.	A	failure	
occurs	to	do	some	configuration	job	on	the	postgres	backend,	which	is	started	more	often	
by	initdb.	

If	one	of	them	crashes,	putting	gdb	in	initdb	is	OK	by	itself,	and	gdb	will	not	break	because	
initdb	itself	does	not	crash.	

All	you	need	to	do	is	run	initdb	in	gdb,	set	a	breakpoint	on	fork,	and	then	continue	
execution.	When	you	trigger	a	breakpoint,	the	function	will	end.	gdb	will	report	that	a	child	
process	has	been	created.	But	this	is	not	what	you	want,	since	it	is	the	shell	that	started	the	
actual	postgres	instance.	

Find	the	postgres	instance	that	began	using	ps	while	initdb	is	paused.	pstree -p	can	be	
useful	for	this.	If	you	find	it,	attach	a	separate	gdb	session	as	gdb -p $ the_postgres_pid.	
At	this	point,	you	can	safely	disconnect	gdb	from	initdb	and	debug	the	failed	postgres	
instance.	

https://wiki.postgresql.org/wiki/Gdblive_script
http://blog.vinceliu.com/2009/07/gdbs-conditional-breakpoints.html

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

I need to change the parsing query. Can you briefly describe the parser file?

The	parser	file	is	in	the	src/backend/parser	directory.	

scan.l	defines	a	lexer	that	is	an	algorithm	for	splitting	a	string	(including	SQL	statements)	
into	a	token	stream.	Tokens	are	usually	single	words	and	do	not	contain	spaces;	they	are	
instead	separated	by	spaces.	For	example,	it	can	be	a	string	enclosed	in	double	or	single	
quotation	marks.	The	lexer	is	basically	defined	as	a	regular	expression	that	describes	
various	token	types.	

gram.y	defines	the	grammar	(syntax	structure)	of	the	SQL	statement	using	tokens	
generated	by	the	lexer	as	basic	building	blocks.	The	grammar	is	defined	in	BNF	notation.	
BNF	is	similar	to	regular	expressions,	but	works	at	the	non-character	token	level.	Patterns	
(also	called	rules	or	productions	in	BNF)	are	named	and	can	be	recursive.	That	is,	it	can	use	
itself	as	a	subpattern.	

The	actual	lexer	is	created	in	scan.l	with	a	tool	called	flex;	its	manual	can	be	found	at	
http://flex.sourceforge.net/manual/.	

The	actual	parser	is	created	in	gram.y	with	a	tool	called	bison;	a	relevant	guide	can	be	
found	at	http://www.gnu.org/s/bison/.	

However,	if	you	have	not	used	flex	or	bison	before,	you	may	find	it	a	bit	difficult	to	learn.	

How can I efficiently access information of the system catalogs in the backend
code?

First	you	need	to	find	the	tuple	(row)	you	are	interested	in.	There	are	two	ways.	First,	
SearchSysCache()	and	related	functions	allow	you	to	query	system	catalogs	using	
predefined	indexes	of	the	catalog.	This	is	the	primary	way	to	access	system	tables	because,	
after	loading	the	row	that	needs	first	call	on	the	cache,	subsequent	requests	can	return	
results	without	accessing	the	base	table.	A	list	of	available	caches	is	in	
src/backend/utils/cache/syscache.c.	Many	column-specific	cache	lookups	are	contained	in	
src/backend/utils/cache/lsyscache.c.	

The	row	returned	is	the	heap	row	of	the	cache-owned	version.	Therefore,	you	should	not	
modify	or	delete	the	tuple	returned	by	SearchSysCache().	You	must	release	it	when	you	
have	finished	using	ReleaseSysCache().	This	tells	the	cache	that	it	can	delete	the	tuple	if	
necessary.	If	you	do	not	call	ReleaseSysCache(),	the	cache	entry	is	locked	in	the	cache	until	
the	transaction	ends.	This	can	be	tolerated	only	in	the	stage	of	development	(not	tolerated	
in	a	code	worth	releasing).	

If	the	system	cache	is	not	available,	you	should	retrieve	the	data	directly	from	the	heap	
table	using	the	buffer	cache	shared	by	all	backends.	The	backend	automatically	loads	the	

http://flex.sourceforge.net/manual/
http://flex.sourceforge.net/manual/
http://www.gnu.org/s/bison/
http://www.gnu.org/s/bison/

	

Copyright	©	SKAI	worldwide	Co.,	Ltd.	2025.	All	rights	reserved.	

	

row	into	the	buffer	cache.	To	do	this,	use	heap_open()	to	open	the	table.	You	can	then	start	
the	table	scan	using	heap_beginscan()	and	continue	it	as	long	as	you	use	
heap_getnext()	and	HeapTupleIsValid()	returns	true.	Now,	run	heap_endscan().	The	key	
can	be	assigned	to	the	scan.	Since	the	index	is	not	used,	all	rows	are	compared	to	the	key	
and	only	valid	rows	are	returned.	

You	can	also	fetch	rows	by	block	number/offset	using	heap_fetch().	While	the	checker	
automatically	locks/unlocks	rows	in	the	buffer	cache,	it	should	pass	the	buffer	pointer	with	
heap_fetch().	When	finished,	releaseBuffer()	should	be	passed.	

Once	there	is	a	row,	you	can	access	the	HeapTuple	structure	entry	to	get	data	common	to	
all	tuples	such	as	t_self	and	t_oid.	If	you	need	a	table-related	column,	you	need	to	fetch	a	
HeapTuple	pointer	and	use	the	GETSTRUCT	()	macro	to	access	the	table-related	start	tuple.	
Then,	cast	the	pointer	(e.g.	Form_pg_proc	if	accessing	the	pg_proc	table,	or	Form_pg_type	if	
accessing	pg_type).	You	can	then	access	the	fields	of	the	tuple	using	struct	pointers:	
((Form_pg_class)	GETSTRUCT	(tuple))->relnatts	

However,	this	works	only	when	the	column	is	fixed-width	and	non-null	and	when	all	
previous	columns	are	fixed-width	and	absolutely	null.	Otherwise,	as	the	position	of	the	
column	is	variable,	you	must	extract	it	from	the	tuple	using	heap_getattr()	or	a	related	
function.	
Do	not	store	it	directly	in	the	struct	field	by	changing	the	live	tuple.	The	best	option	is	to	
use	heap_modifytuple()	to	pass	the	original	tuple	and	the	value	you	want	to	change.	It	
returns	a	tuple	enclosed	in	palloc,	and	passes	it	to	heap_update().	You	can	delete	a	tuple	by	
passing	tuple's	t_self	to	heap_delete().	Use	t_self	for	heap_update()	as	well.	A	tuple	can	be	a	
copy	of	the	system	cache	that	may	disappear	after	calling	ReleaseSysCache(),	or	that	reads	
directly	from	the	disk	buffer	when	heap_getnext(),	heap_endscan,	or	ReleaseBuffer()	in	the	
heap_fetch()	case	disappears	(Or,	it	can	be	a	palloc	tuple).	When	done,	you	should	perform	
pfree().	

How can I add a new port?

There	are	many	places	to	modify	to	add	a	new	port.	Start	with	the	src/template	directory.	
Add	an	appropriate	item	to	the	OS.	Use	src/config.guess	to	add	the	OS	to	
src/template/.similar.	You	do	not	have	to	match	the	OS	versions	exactly.	The	configure	test	
finds	the	correct	OS	version	number;	if	not	found,	it	finds	what	matches	without	a	version	
number.	Edit	src/configure.in	to	add	the	new	OS.	See	above	configuration	items.	You	
should	run	autoconf	or	patch	src/configure.	

Then,	check	src/include/port	and	add	the	new	OS	file	with	appropriate	values.	Fortunately,	
there	is	a	lock	code	for	CPU	in	src/include/storage/s_lock.h.	There	is	also	a	src/makefiles	
directory	for	port-specific	Makefile	processing.	There	is	a	backend/port	directory	in	case	
your	OS	needs	special	files.	

